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PROBLEMS PROPOSED IN THIS ISSUE

H-782 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Given positive integers r and s find formulas for the sums

(i)

∞
∑

n=1

(−1)srn

α(s−1)rnFrnFr(n+1)Fr(n+2) · · ·Fr(n+s)

;

(ii)

∞
∑

n=1

(−1)srn

α(s−1)rnLrnLr(n+1)Lr(n+2) · · ·Lr(n+s)

.

H-783 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Prove that

(i)

∞
∑

n=1

1

F 2
n + 1

=
−3 + 5

√
5

6
;

(ii)
∞
∑

n=3

1

F 2
n − 1

=
43− 15

√
5

18
;

(iii)

∞
∑

n=3

1

F 4
n − 1

=
35− 15

√
3

18
.

H-784 Proposed by Gleb Glebov, Simon Fraser University, Canada.

Prove that

(i)

∞
∑

k=1

[

1

24k + 11
− 1

24k − 11
+

1

24k + 1
− 1

24k − 1

]

=
π(
√
6 +

√
2)

12
− 12

11
;

(ii)

∞
∑

k=1

[

1

24k + 7
− 1

24k − 7
+

1

24k + 5
− 1

24k − 5

]

=
π(
√
6−

√
2)

12
− 12

35
.
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H-785 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Let

(

n

k

)

F

denote the Fibonomial coefficient. For m ≥ n ≥ 1, find closed forms expressions

for the sums

(i)

n
∑

k=0

F2k

(

2n

n+ k

)

F

(

2m

m+ k

)

F

;

(ii)

n
∑

k=0

F2k

(

2n

n+ k

)−1

F

(

2m

m+ k

)−1

F

.

H-786 Proposed by Atara Shriki, Oranim College of Education.

Assume that the consecutive numbers in the Fibonacci sequence are the coordinates of a
polygon’s vertices in the Cartesian coordinate system, counterclockwise:

A1(F1, F2); A2(F3, F4); A3(F5, F6); A4(F7, F8); . . . ; An(F2n−1, F2n).

What is the area of such a polygon?

SOLUTIONS

Sums of Products of Fibonacci Numbers and Binomial Coefficients

H-752 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.
(Vol. 52, No. 2, May 2014)

Prove that

(1)5mL2m+1

2n+1
∑

p=0

(

2n+ 1

p

) p
∑

k=0

(

p

k

)

Fk = 5nL2n+1

2m+1
∑

p=0

(

2m+ 1

p

) p
∑

k=0

(

p

k

)

Fk,

(2)5mF2m+1

2n+1
∑

p=0

(

2n + 1

p

) p
∑

k=0

(

p

k

)

Lk = 5nF2n+1

2m+1
∑

p=0

(

2m+ 1

p

) p
∑

k=0

(

p

k

)

Lk.

Solution by Ángel Plaza, Gran Canaria, Spain.

Both identities straightforwardly come from the fact that the binomial transform of the
Fibonacci sequence is the bisection of the Fibonacci sequence, that is

∑p
k=0

(

p
k

)

Fk = F2p and
the binomial transform of the Lucas sequence is the bisection of the Lucas sequence, that is
∑p

k=0

(

p
k

)

Lk = L2p. We will show only identity (1). We use LHS and RHS, respectively for
the left-hand side and right-hand side of (1). Then,

LHS = 5mL2m+1

2n+1
∑

p=0

(

2n+ 1

p

)

F2p = 5mL2m+1

2n+1
∑

p=0

(

2n + 1

p

)

α2p − β2p

√
5

= 5mL2m+1

(

1 + α2
)2n+1 −

(

1 + β2
)2n+1

√
5

= 5mL2m+1
(2 + α)2n+1 − (2 + β)2n+1

√
5

= 5mL2m+15
nL2n+1 = 5n+mL2m+15

nL2n+1,
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since 2 + α = 5+
√
5

2 =
√
5α and 2 + β = 5−

√
5

2 = −
√
5β.

Similarly RHS = 5n+mL2n+1L2m+1 and hence (1) holds.

Also solved by Kenneth B. Davenport, Zbigniew Jakubczyk, Harris Kwong,
Hideyuki Ohtsuka, and the proposers.

Sums of Fourth Powers of Fibonacci Numbers with Indices
in Arithmetic Progressions

H-753 Proposed by H. Ohtsuka, Saitama, Japan.
(Vol. 52, No. 2, May 2014)

For integers n ≥ 1, m ≥ 1, a 6= 0 and b, prove that

n
∑

k=1

F 4m
ak+b =

2m
∑

r=1

(

4m

2m− r

)

(−1)(an+b+1)rFanrL(an+a+2b)r

25mFar

+

(

4m

2m

)

n

25m
.

Solution by Harris Kwong, SUNY, Fredonia.

We deduce from

(αak+b − βak+b)4m =

4m
∑

i=0

(

4m

i

)

(−1)iα(ak+b)(4m−i)β(ak+b)i

=

(

4m

2m

)

+

2m
∑

r=1

(

4m

2m− r

)

(−1)2m−rα(ak+b)(2m+r)β(ak+b)(2m−r)

+

2m
∑

r=1

(

4m

2m+ r

)

(−1)2m+rα(ak+b)(2m−r)β(ak+b)(2m+r)

=

(

4m

2m

)

+
2m
∑

r=1

(

4m

2m− r

)

(−1)r(αβ)2(ak+b)m

(

α

β

)(ak+b)r

+
2m
∑

r=1

(

4m

2m+ r

)

(−1)r(αβ)2(ak+b)m

(

β

α

)(ak+b)r

=

(

4m

2m

)

+
2m
∑

r=1

(

4m

2m− r

)

(−1)r

[

(

α

β

)ak+b)r

+

(

β

α

)(ak+b)r
]

that

25m
n
∑

k=1

F 4m
ak+b =

(

4m

2m

)

n+

2m
∑

r=1

(

4m

2m− r

)

(−1)r
n
∑

k=1

[

(

α

β

)(ak+b)r

+

(

β

α

)(ak+b)r
]

.
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We find

n
∑

k=1

(

α

β

)(ak+b)r

=

(

α

β

)(a+b)r 1−
(

α
β

)arn

1−
(

α
β

)ar

=

(

α

β

)(a+b)r

· βar

βarn
· β

arn − αarn

βar − αar

=
α(a+b)r

β(an+b)r
· Farn

Far

.

In a similar manner, we also find
n
∑

k=1

(

β

α

)(ak+b)r

=
β(a+b)r

α(an+b)r
· Farn

Far

.

Therefore,

n
∑

k=1

[

(

α

β

)ak+b)r

+

(

β

α

)(ak+b)r
]

=
Farn

Far

(

α(a+b)r

β(an+b)r
+

β(a+b)r

α(an+b)r

)

=
Farn

Far

· α
(a+2b+an)r + β(a+2b+an)r

(αβ)(an+b)r

=
(−1)(an+b)rFarnL(a+2b+an)r

Far

,

from which the desired result follows immediately.

Also solved by the proposer.

Identities with Tribonacci like Sequences

H-754 Proposed by H. Ohtsuka, Saitama, Japan.
(Vol. 52, No. 1, February 2014)

Let a, b and n be integers. The two sequences {Tn} and {Sn} satisfy

Tn+3 = Tn+2 + Tn+1 + Tn with arbitrary T0, T1, T2,

Sn+3 = Sn+2 + Sn+1 + Sn with S0 = 3, S1 = 1, S2 = 3

for all integers n. Let Rn = Sn + 1. For n ≥ 1, prove that

(R2
a −R2

−a)

n
∑

k=1

T 2
ak+b = An −A0,

where

An = 2Tan+b(RaTan+a+b +R−aTan−a+b)− (Tan+a+b − Tan−a+b)
2 − (R−aTan+b)

2.

Solution by the proposer.

Howard (see (3.6) in [1]) showed that

Tn+2a = SaTn+a − S−aTn + Tn−a.

Letting n = ak + b in the above identity, we have

Ta(k+2)+b = SaTa(k+1)+b − S−aTak+b + Ta(k−1)+b.
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Let p = Sa, q = S−a, and tn = Tan+b. We have

tk+2 = ptk+1 − tk + tk−1. (1)

We have

0 = 2

n
∑

k=1

tk((tk+2 − ptk+1 + qtk − tk−1) + (tk+1 − ptk + qtk−1 − tk−2))

−
n
∑

k=1

((tk+1 − ptk)
2 − (−qtk−1 + tk−2)

2) (by (1))

= (2q − 2p− p2)

n
∑

k=1

t2k + q2
n
∑

k=1

t2k−1 +

n
∑

k=1

(t2k−2 − t2k+1)

+ 2

n
∑

k=1

(tktk+1 − tk−1tk) + 2q

n
∑

k=1

(tk−1tk − tk−2tk−1) + 2

n
∑

k=1

(tktk+2 − tk−2tk)

= (2q − 2p− p2)

n
∑

k=1

t2k + q2

(

n
∑

k=1

t2k − t2n + t20

)

+ t2−1 + t20 + t21 − t2n−1 − t2n − t2n+1

+ 2(tntn+1 − t0t1) + 2q(tn−1tn − t−1t0) + 2(tntn+2 + tn−1tn+1 − t−1t1 − t0t2)

= (2q − 2p− p2 + q2)

n
∑

k=1

t2k − 2t0(t2 + t1 + qt−1) + (t1 − t−1)
2 + (q2 + 1)t20

+ 2tn(tn+2 + tn+1 + qtn−1)− (tn+1 − tn−1)
2 − (q2 + 1)t2n

= ((q + 1)2 − (p + 1)2)

n
∑

k=1

t2k − 2t0(pt1 − qt0 + t−1 + t1 + qt−1) + (t1 − t−1)
2 + (q2 + 1)t20

+ 2tn(ptn+1 − qtn + tn−1 + tn+1 + qtn−1)− (tn+1 − tn−1)
2 − (q2 + 1)t2n (by (1))

= (R2
−a −R2

a)

n
∑

k=1

t2k − 2t0((p + 1)t1 + (q + 1)t−1) + (t1 − t−1)
2 + (q + 1)2t20

+ 2tn((p + 1)tn+1 + (q + 1)tn−1)− (tn+1 − tn−1)
2 − (q + 1)2t2n

= (R2
a −R2

−a)

n
∑

k=1

t2k − 2t0(Rat1 +R−at−1) + (t1 − t−1)
2 + (Rat0)

2

+ 2tn(Ratn+1 +R−at−n−1)− (tn+1 − tn−1)
2 − (R−atn)

2.

Therefore, we obtain the desired identity.

Note: Using the identity (1), we can also obtain the following identity:

(Sa − S−a)

n
∑

k=1

Tak+b = Tan+a+b + (1− S−a)Tan+b − Ta+b − (1− S−a)Tb − T−a+b.

References
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Also partially solved by Dmitry Fleischman.
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Cauchy-Schwartz to the Rescue

H-755 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.
(Vol. 52, No. 1, February 2014)

Let n ≥ 1 be an integer. Prove that

(1) If xk ∈ R for k = 1, . . . , n, then

2

(

n
∑

k=1

Lk sinxk

)(

n
∑

k=1

Lk cos xk

)

≤ n(LnLn+1 − 2).

(2) If m ≥ 1, then

mm

n
∑

k=1

(1 + L2k−1)
m+1 ≥ (m+ 1)m+1(L2n+2 − 2).

Solution to (1) by Adnan Ali, Mumbai, India.

From the AM-GM Inequality and Cauchy-Schwartz Inequality, we have

2

(

n
∑

k=1

Lk sinxk

)(

n
∑

k=1

Lk cos xk

)

≤
(

n
∑

k=1

Lk sinxk

)2

+

(

n
∑

k=1

Lk cos xk

)2

≤
(

n
∑

k=1

L2
k

)(

n
∑

k=1

sin2 xk

)

+

(

n
∑

k=1

L2
k

)(

n
∑

k=1

cos2 xk

)

= n

(

n
∑

k=1

L2
k

)

= n(LnLn+1 − 2).

Solution to (2) by Ángel Plaza, Gran Canaria, Spain.

Inequality (2) does not hold for some values of m and n (for example, for m = 1 and
n = 1, 2). Instead, we will prove the following modified version:

(2’) If m ≥ 1, then mm

n
∑

k=1

(1 + L2k−1)
m+1 ≥ (m+ 1)m+1(L2n − 1).

Since
n
∑

k=1

L2k−1 = L2n − 2, last inequality is equivalent to

mm

n
∑

k=1

(

1 + L2k−1

m+ 1

)m+1

≥
n
∑

k=1

L2k−1.

Last inequality follows immediately since function f(x) = mm
(

1+x
m+1

)m+1
− x is increasing

for every m ≥ 1 and x ≥ 1, because f ′(x) = mm
(

1+x
m+1

)m

− 1 ≥ 0 for x ≥ 1 and L2k−1 ≥ 1 for

k = 1, 2, . . . , n.

Also solved by Dmitry Fleischman, Zbigniew Jakubczyk, Hideyuki Ohtsuka,
and the proposers.
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Note: Concerning H-688, the proposer pointed out that the recent references give a neg-
ative answer to problem H-688.
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