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PROBLEMS PROPOSED IN THIS ISSUE

H-635 Proposed by Jayantibhai M. Patel, Ahmedabad, India
For any positive integer n, prove that
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and that the same holds with the Fibonacci numbers replaced by the corresponding Lucas
numbers.

H-636 Proposed by Charles K. Cook, Sumter, SC
Evaluate the determinant of the matrix
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where Fn, Ln, Pn and Rn are the Fibonacci, Lucas, Pell and Pell-Lucas numbers, respectively.

H-637 Proposed by Ovidiu Furdui, Kalamazoo, MI
Prove that
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are the sides of a triangle whose circumradius is 1/2 for all n ≥ 0.
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H-638 Proposed by José Luis Dı́az-Barrero, Barcelona, Spain
Let n be a positive integer. Prove that

4 + 2
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k=1
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log
(
1 + Fk+1/Fk

) < Fn+1 + 3Fn+2.

SOLUTIONS

An identity for Lucas polynomials

H-621 Proposed by Mario Catalani, Torino, Italy
(Vol. 43, no. 1, February 2005)

Let Ln(x, y) be the bivariate Lucas polynomials, defined by Ln(x, y) = xLn−1(x, y) +
yLn−2(x, y), L0(x, y) = 2, L1(x, y) = x. Assume x2 + 4y 6= 0. Prove the following identity

n∑
k=0

(
n + k

k

)
(−y)kx−(k+1)Ln+1−k(x, y) = xn.

Solution by the proposer

Consider the polynomials Ln(1, y). The roots of the characteristic equation, α ≡ α(1, y)
and β ≡ β(1, y), are such that α + β = 1, αβ = −y.
Identity 1.78 in [2] says that

n∑
k=0

(
n + k

k

) [
(1− x)n+1xk + xn+1(1− x)k

]
= 1.

In the left hand side, write x = α to get

n∑
k=0

(
n + k

k

)
(βn+1αk + αn+1βk) =

n∑
k=0

(
n + k

k

)
(−y)kLn+1−k(1, y). (1)

In [1], it is proved that
Ln(x, −y) = (iγ)−nLn(iγx, γ2y),

where i2 = −1 and γ is a complex number. Take γ = 1
ix . Then

Ln(x, −y) = xnLn

(
1, − y

x2

)
,
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that is
Ln(x, y) = xnLn

(
1,

y

x2

)
. (2)

In the right hand side of formula (1) replace y by y/x2 and then use formula (2) to get

n∑
k=0

(
n + k

k

) (
− y

x2

)k

x−(n+1−k)Ln+1−k(x, y) = 1,

which reduces easily to the desired identity.
[1] M. Catalani. “Generalized Bivariate Fibonacci Polynomials,”

http://front.math.ucdavis.edu/math.CO/0211366.
[2] H. W. Gould. “Combinatorial Identities,” Morgantown, W. Va., 1972.

Also solved by Paul S. Bruckman and G. C. Greubel.

Lucas Sequences and Sophie Germain Primes

H-622 Proposed by Lawrence Somer, The Catholic University of America, Wash-
ington, DC

(Vol. 43, no. 2, May 2005)

Let u(a, b) be the Lucas sequence defined by u0 = 0, u1 = 1 and un+2 = aun+1− bun and
having discriminant D(a, b) = a2−4b, where a and b are integers. Let ω(n) denote the number
of distinct prime divisors of n. Let c > 1 be a fixed positive integer. Show that there exist
2ω(c) distinct Lucas sequences u(a, c2) such that 2p + 1 | up(a, c2) for every Sophie Germain
prime p such that 2p + 1 6 | D(a, c2), where (a, c) = 1 and aD(a, c2) 6= 0. Recall that p is a
Sophie Germain prime if both p and 2p + 1 are primes.

Combined solution by the proposer and the editor

It follows, by the Binet formula, that un(−a, c2) = (−1)n+1un(a, c2). Thus, we can assume
without loss of generality that a > 0. It suffices to find 2ω(c)−1 positive integers a coprime to
c such that 2p + 1 | up(a, c2) for all Sophie Germain primes p such that 2p + 1 6 | cD(a, c2).

By a theorem of D. H. Lehmer (see [1, pg. 441]), if u(a, b) is a Lucas sequence and q is
an odd prime such that q 6 | D and (b/q) = 1, then q | u(q−(D/q))/2, where (b/q) and (D/q) are
Legendre symbols. Thus, if D(a, c2) = a2 − 4c2 is equal to a nonzero square m2, then

2p + 1 | up(a, c2)

for all Sophie Germain primes p such that 2p+1 6 | cD(a, c2). Consequently, it suffices to show
that there exist 2ω(c)−1 positive integers a coprime to c such that

a2 − 4c2 = a2 − (2c)2 = m2 (1)

for some positive integer m.
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Rewriting (1) as (a−m)(a + m) = (2c)2 = 4c2, and recalling that m and c are coprime,
we see that if we write α for the exact order at which 2 divides 4c2, then there exist two
coprime odd divisors d1 and d2 of c2 whose product is c2/2α−2 such that a−m = 2α−1d1 and
a+m = 2d2. Note that α is even and that c = 2α/2−1c1, where c1 is odd. It is clear that there
are precisely 2ω(c1) possibilities for an odd divisor d1 of c2

1 such that c2
1/d1 = d2 is coprime to

d1. Further, for each such divisor d1, we can put

a−m = min{2α−1d1, 2d2} and a + m = max{2α−1d1, d2},

whose solution is a = 2α−2d1 + d2 and m = |2α−2d1 − d2|. Note that we do have m > 0 since
m = 0 implies α = 2, d1 = d2 = 1, therefore c = 1, which is not allowed. We now note that
half of the values of a obtained in this way are distinct for distinct divisors d1 of c if c is odd,
and all of them are distinct if c is even. Indeed, if two such a′s are equal, then by (1) and the
fact that m > 0, we get that the corresponding m’s are also equal. Thus, the pair of numbers
a − m and a + m are the same. When c is odd then d1 is one of (a − m)/2 and (a + m)/2.
When c is even, then exactly one of a − m and a + m is a multiple of 2α−1 and d1 is the
corresponding cofactor. Since ω(c1) = ω(c) − 1 if c is even and ω(c1) = ω(c) ≥ 1 if c > 1 is
odd, the required conclusion now follows.
[1] D. H. Lehmer. “An Extended Theory of Lucas’ Functions,” Ann. of Math. 31 (1930) :
419–448.
Also solved by Paul S. Bruckman.

A Large Product

H-623 Proposed by José Luis Dı́az-Barrero, Barcelona, Spain
(Vol. 43, no. 2, May 2005)

Let n be a positive integer. Prove that

2n−1∏
k=1

(2n− k)F 2
k ≤

( F2n

F2n−1

)F2n−1F2n

.

Solution by H.-J. Seiffert, Berlin, Germany

It is known (see equation (3.32) in [1]), that FkFk+1 − Fk−1Fk+2 = (−1)k+1. Also, we
have that Fk−1Fk+2 = (Fk+1 − Fk)(Fk+1 + Fk) = F 2

k+1 − F 2
k . Now, it is easily verified that

kF 2
k = ((k + 1)Fk − Fk+1)Fk+1 − (kFk−1 − Fk)Fk + (−1)k.

Summing over k = 1, 2, . . . , 2n− 1, and noting the telescoping on the right hand side gives

2n−1∑
k=1

kF 2
k = (2nF2n−1 − F2n)F2n. (1)
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¿From equation (I3) in Hoggatt’s list, we know that

Sn :=
2n−1∑
k=1

F 2
k = F2n−1F2n. (2)

Subtracting (1) from the 2n-times (2) yields

Tn :=
2n−1∑
k=1

(2n− k)F 2
k = F 2

2n. (3)

The natural logarithm ln is concave on the interval (0,+∞). Hence, by Jensen’s inequality,

2n−1∑
k=1

F 2
k ln(2n− k) ≤ Sn ln(Tn/Sn).

Using (2) and (3), after simplifying and upon exponentiation, one obtains the desired inequal-
ity.
[1] A. F. Horadam & Bro. J. M. Mahon. “Pell and Pell-Lucas Polynomials,” The Fibonacci
Quarterly 23.1 (1985) : 7–20.

Also solved by Said Amghibech, Paul S. Bruckman, Ovidiu Furdui and the pro-
poser.

Limits of Integrals

H-624 Proposed by Ovidiu Furdui, Western Michigan University, Kalamazoo, MI
(Vol. 43, no. 2, May 2005)

Prove that

lim
n→∞

∫ 1

0

1 + tFn

1 + tLn
dt = 1 and lim

n→∞

∫ n

1

1 + tFn

1 + tLn
dt = 0.

Solution by Said Amghibech, St. Foy, Canada

For t ∈ [0, 1], we have

1 ≤ 1 + tFn

1 + tLn
≤ 1 + tFn ;
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thus,

1 ≤
∫ 1

0

1 + tFn

1 + tLn
dt ≤

∫ 1

0

(1 + tFn)dt = 1 +
1

1 + Fn
,

so

lim
n→∞

∫ 1

0

1 + tFn

1 + tLn
dt = 1.

For t ∈ [1, n], we have

0 ≤ 1 + tFn

1 + tLn
≤ 1

tLn
+

1
tLn−Fn

.

Thus,

0 ≤
∫ n

1

1 + tFn

1 + tLn
dt ≤

∫ ∞

1

( 1
tLn

+
1

tLn−Fn

)
dt =

1
Ln − 1

+
1

Ln − Fn − 1
,

which gives

lim
n→∞

∫ n

1

1 + tFn

1 + tLn
dt = 0

Also solved by Paul S. Bruckman, H.-J. Seiffert and the proposer.

Correction: In H-663 (volume 43.4) the “A + B = C” should have been “A = B + C”.
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