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PROBLEMS PROPOSED IN THIS ISSUE

H-697 Proposed by N. Gauthier, Kingston, ON
Define K0 = 1 and, for a positive integer n, let Kn represent the sum of the cubes of the

first n positive integers. Then define
[

n

k

]

K

=
KnKn−1 · · ·Kn−k+1

KkKk−1 · · ·K1K0
, for 0 ≤ k ≤ n.

a) Show that

[

n

n− k

]

K

=

[

n

k

]

K

.

b) Show that

[

n

k

]

K

= m2, where m = m(n, k) is a positive integer.

c) Find a closed form expression for Sn =
∑

k≥0m(n, k).

H-698 Proposed by Hideyuki Ohtsuka, Saitama, Japan

i) Prove that
(

∞
∑

k=n

1

F 2
k

)−1

= Fn−1Fn − (−1)n

3
+O

(

1

F 2
n

)

.

ii) Is it true that for all nonnegative integers m we have the estimate
(

∞
∑

k=n

1

FkFk+m

)−1

=

n−1
∑

k=1

FkFk+m +
1

3
Fm−2(−1)n +O

(

1

F 2
n

)

,

where the constant implied by the above O might depend on m?
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H-699 Proposed by Ovidiu Furdui, Cluj, Romania and Huizeng Qin, Shandong,
China

Let k ≥ 0 be a natural number and let (xn)n∈N be the sequence defined by

xn = n

√

Γ

(

−2k +
1

2

)

Γ

(

−2k +
1

3

)

· · ·Γ
(

−2k +
1

n

)

− n

√

(−1)n−1Γ

(

−(2k + 1) +
1

2

)

Γ

(

−(2k + 1) +
1

3

)

· · ·Γ
(

−(2k + 1) +
1

n

)

,

where Γ denotes the classical Gamma function. Find limn→∞ xn/n.

SOLUTIONS

Some Telescoping Series

H-680 Proposed by N. Gauthier, Kingston, ON
(Vol. 46, No. 4, November 2008)

For x 6= 0 an indeterminate and for an integer n ≥ 0, consider the generalized Fibonacci
and Lucas polynomials {fn}n and {ln}n, respectively, given by the following recurrences

fn+2 = xfn+1 + fn n ≥ 0, where f0 = 0, f1 = 1;

ln+2 = xln+1 + ln n ≥ 0, where l0 = 2, l1 = x.

Find closed-form expressions for the following sums:

(a)

m
∑

k=1

(−1)kn
1

f(k+1)nfkn
, m, n ≥ 1;

(b)

m
∑

k=0

(−1)kn
1

l(k+1)nlkn
, m, n ≥ 0;

(c)

m
∑

k=1

(−1)kn
f(2k+1)n

f2
(k+1)nf

2
kn

, m, n ≥ 1;

(d)

m
∑

k=0

(−1)kn
f(2k+1)n

l2(k+1)nl
2
kn

, m, n ≥ 0;

(e)

m
∑

k=0

(−1)kn
f(2k+1)n[f

2
(2k+1)n + f2

n]

l4(k+1)nl
4
kn

, m, n ≥ 0.

Solution by the proposer

The characteristic equations for the given recurrences are identical and have roots α =
1
2(x +

√
x2 + 4), β = 1

2 (x −
√
x2 + 4), with αβ = −1 and α + β = x. The Binet form for

the terms of the generalized Fibonacci sequence is fn = (αn − βn)/(α − β) and for the Lucas
sequence is ln = αn + βn. We first prove two results that will simplify the proofs.

1. For integers r and s, we have fr+s =
1
2 (frls + fslr).
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For the proof, note that

fr+s =
1

α− β
(αr+s − βr+s)

=
1

2(α − β)

(

(αr+s − βr+s + αrβs − αsβr) + (αr+s − βr+s − αrβs + αsβr)
)

=
1

2(α − β)
((αr − βr)(αs + βs) + (αs − βs)(αr + βr))

=
1

2
(frls + fslr),

which is what we wanted to prove.

2. For integers r and s, we have that fr−s =
(−1)s

2 (frls − fslr).

For the proof,

fr−s =
1

α− β
(αr−s − βr−s)

=
1

(α− β)

(

αrβs(αβ)−s − αsβr(αβ)−s
)

=
(−1)s

2(α − β)

(

(αr+s − βr+s + αrβs − αsβr)− (αr+s − βr+s − αrβs + αsβr)
)

=
(−1)s

2(α − β)
((αr − βr)(αs + βs)− (αs − βs)(αr + βr))

=
(−1)s

2
(frls − fslr),

which is what we wanted to prove.

Now, with (n, k) integers, put r := n(k+1) and s := nk in the above formulas and rearrange
the results in either one of the following forms, by dividing by fn(k+1)fnk or by ln(k+1)lnk, as
the case may be, to get that:

(1a)
fn(2k+1)

fn(k+1)fnk
=

1

2

(

lnk
fnk

+
ln(k+1)

fn(k+1)

)

, n ≥ 1, k ≥ 1;

(1b)
fn(2k+1)

ln(k+1)lnk
=

1

2

(

fn(k+1)

ln(k+1)
+

fnk
lnk

)

, n ≥ 0, k ≥ 0;

(2a)
(−1)nkfn
fn(k+1)fnk

=
1

2

(

lnk
fnk

−
ln(k+1)

fn(k+1)

)

, n ≥ 1, k ≥ 1;

(2b)
(−1)nkfn
ln(k+1)lnk

=
1

2

(

fn(k+1)

ln(k+1)
− fnk

lnk

)

, n ≥ 0, k ≥ 0.

To find the sought closed forms, we first invoke (2a) and sum the resulting telescoping series.
This gives the desired closed form for sum (a) upon division of (2a) by fn:

Closed form for (a):
m
∑

k=1

(−1)nk
1

fn(k+1)fnk
=

1

2fn

m
∑

k=1

(

lnk
fnk

−
ln(k+1)

fn(k+1)

)

=
1

2fn

(

ln
fn

−
ln(m+1)

fn(m+1)

)

, m ≥ 1, n ≥ 1.

We proceed similarly for sum (b) and get, upon division of (2b) by fn, that:
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Closed form for (b):
m
∑

k=0

(−1)nk
1

ln(k+1)lnk
=

1

2fn

m
∑

k=0

(

fn(k+1)

ln(k+1)
− fnk

lnk

)

=
fn(m+1)

2fnln(m+1)
, m ≥ 0, n ≥ 1.

To proceed further, form the product of equation (1a) by equation (2a) and get that:

(3) (−1)nk
fnfn(2k+1)

f2
n(k+1)f

2
nk

=
1

4

(

l2
n(k+1)

f2
n(k+1)

− l2nk
f2
nk

)

.

Dividing this result by fn then gives the summand in (c) and the resulting sum telescopes:

Closed form for (c):

m
∑

k=1

(−1)nk
fn(2k+1)

f2
n(k+1)f

2
nk

=
1

4fn

(

l2
n(m+1)

f2
n(m+1)

− l2n
f2
n

)

, m ≥ 1, n ≥ 1.

Similarly, form the product of (1b) by (2b) and get:

(4) (−1)nk
fnfn(2k+1)

l2
n(k+1)l

2
nk

=
1

4

(

f2
n(k+1)

l2
n(k+1)

− f2
nk

l2nk

)

.

This gives the summand of sum (d) upon division by fn and the sum collapses to give:

Closed form for (d):

m
∑

k=0

(−1)nk
fn(2k+1)

l2
n(k+1)l

2
nk

=
f2
n(m+1)

4fnl
2
n(m+1)

, m ≥ 0, n ≥ 1.

Next, take the square of equation (1b) and add the result to the square of equation (2b).
This gives:

(5)
f2
n(2k+1) + f2

n

l2
n(k+1)l

2
nk

=
1

4

(

(

fn(k+1)

ln(k+1)
+

fnk
lnk

)2

+

(

fn(k+1)

ln(k+1)
− fnk

lnk

)2
)

=
1

2

(

f2
n(k+1)

l2
n(k+1)

+
f2
nk

l2
nk

)

.

Multiplication of this result by (4) then gives:

(6) (−1)nk
fnfn(2k+1)(f

2
n(k+1) + f2

n)

l4
n(k+1)l

4
nk

=
1

8

(

f4
n(k+1)

l4
n(k+1)

− f4
nk

l4nk

)

.

This gives the summand in sum (e) upon division by fn and we get the desired result due
to the collapsing of the series:

Closed form for (e):

m
∑

k=0

(−1)nk
fn(2k+1)(f

2
n(k+1) + f2

n)

l4
n(k+1)l

4
nk

=
f4
n(m+1)

8fnl4n(m+1)

, m ≥ 0, n ≥ 1.

Also solved by Paul S. Bruckman.
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Integral Power Binomial Weighted Sums of Generalized Fibonacci Polynomials

H-681 Proposed by N. Gauthier, Kingston, ON
(Vol. 47, No. 1, February 2009/2010)

For a real variable z 6= 0 consider the sets of generalized Fibonacci and Lucas polynomials,
{fn = fn(z) : n ∈ Z} and {ln = ln(z) : n ∈ Z}, given by the recurrences

fn+2 = zfn+1 + fn, and ln+2 = zln+1 + ln, for all n ∈ Z,

with f0 = 0, f1 = 1, l0 = 2, l1 = z. Note that f−n = (−1)n+1fn and l−n = (−1)nln. Let r be
a nonnegative integer and p, q be positive integers.

(a) Prove that

∑

k≥0

(−1)kk

(

r

k

)

fk
p f

r−k
p+q lqk = (−1)q+1rfpf

r−1
q lpr−(p+q).

(b) Find a general formula for
∑

k≥0(−1)kkm
(

r
k

)

fk
p f

r−k
p+q lqk for any nonnegative integer m.

Solution by the proposer

The characteristic equations for the given recurrences are identical and have roots α =
1
2(z +

√
z2 + 4), β = 1

2(z −
√
z2 + 4), with αβ = −1 and α + β = z. The Binet form for

the terms of the generalized Fibonacci sequence is fn = (αn − βn)/(α − β) and for the Lucas
sequence is ln = αn + βn.

To prove identity (a), we use the following lemmas.

Lemma 1. For x a variable and r a nonnegative integer, we have

∑

k≥0

(−1)r−kk

(

r

k

)

(1 + x)k = rxr−1(1 + x).

Proof. First note that
∑

k≥0

(−1)r−k

(

r

k

)

(1 + x)k = xr,

which follows from the binomial expansion of xr = (−1+ (1+ x))r in powers of (1+ x). Then

apply the differential operator (1 + x)
d

dx
to this result and get that

∑

k≥0

(−1)r−kk

(

r

k

)

(1 + x)k = rxr−1(1 + x); r ≥ 0,

which proves Lemma 1. �

Lemma 2. For positive integers (p, q), the solution of the following simultaneous equations

1 + uαp = wα−q, 1 + uβp = wβ−q,

for the unknowns u and w is:

u = − fq
fp+q

, w = (−1)q
fp
fp+q

.
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Proof. One can get at once that αq + uαp+q = w = βq + uβp+q. Hence, since p + q 6= 0, we
get that

u =
βq − αq

αp+q − βp+q
= − fq

fp+q

.

Similarly, one can see that −α−p + wα−(p+q) = u = −β−p + wβ−(p+q). Hence, we get using
the Binet formula for the Fibonacci polynomials that

w =
α−p − β−p

α−(p+q) − β−(p+q)
=

f−p

f−(p+q)
=

(−1)p+1fp
(−1)p+q+1fp+q

= (−1)q
fp
fp+q

,

which proves Lemma 2. �

We now prove summation formula (a). To do so, first note that αβ = −1 implies that
α−q = (−1)qβq. We use Lemma 1 and 2 with

x = uαp = − fq
fp+q

αp, (1 + x) = wα−q = (−1)qwβq =
fp
fp+q

βq,

to get that

∑

k≥0

(−1)r−kk

(

r

k

)(

fp
fp+q

βq

)k

= r

(

− fq
fp+q

αp

)r−1( fp
fp+q

βq

)

= (−1)q+r−1r
fpf

r−1
q

f r
p+q

αpr−(p+q).

Repeating the exercise with

x = − fq
fp+q

βp and (1 + x) =
fp
fp+q

αq,

gives that
∑

k≥0

(−1)r−kk

(

r

k

)

fk
p

fk
p+q

αqk = (−1)q+r−1r
fpf

r−1
q

f r
p+q

βpr−(p+q).

Finally, add these last two results together and multiply the resulting equation by (−1)rf r
p+q

to get identity (a):

∑

k≥0

(−1)kk

(

r

k

)

fk
p f

r−k
p+q lqk = (−1)q+1rfpf

r−1
q lpr−(q+1), r ≥ 0.

To generalize the problem as requested in part (b), we will use the following lemma.

Lemma 3. For x an arbitrary variable and for an integer r 6= 0, we have

∑

k≥0

(−1)r−kkm
(

r

k

)

(1 + x)k =
m
∑

n=0

(r)nS
(m)
n xr−n(1 + x)n,

where {S(m)
n : 0 ≤ m, 0 ≤ n ≤ m} is the augmented set of Stirling numbers of the second

kind, including the n = 0 elements, S
(m)
0 = δm,0. Also, by definition, for n ≥ 1, (r)n =

r(r − 1) · · · (r − n+ 1) and for n = 0, (r)0 = 1.

Proof. For m ≥ 0, consider the differential operator

(

(1 + x)
d

dx

)m

and apply it to the formula

∑

k≥0

(−1)r−k

(

r

k

)

(1 + x)k = xr
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(see Lemma 1). After noting that

(

(1 + x)
d

dx

)m

(1 + x)k = km(1 + x)k as well as the fact

that

(

(1 + x)
d

dx

)m

xr generates an m+1-term expansion in {xr−n(1 + x)n : 0 ≤ n ≤ m}, we
claim that the following holds for nonnegative r, m:

∑

k≥0

(−1)r−kkm
(

r

k

)

(1 + x)k =

m
∑

n=0

(r)na
(m)
n xr−n(1 + x)n.

The unknown coefficients, {a(m)
n : 0 ≤ m, 0 ≤ n ≤ m}, are to be determined by solving the

following linear recurrence:

a(m+1)
n = na(m)

n + a
(m)
n−1; a

(0)
0 = 1, a

(m)
−1 = a

(m)
m+1 = 0.

To prove the above claim, note that it is true for m = 0 if we convene that k0 = 1 for all
k ≥ 0. So, assuming that the above formula is true for m, consider

(

(1 + x)
d

dx

)m+1

xr = (1 + x)
d

dx

((

(1 + x)
d

dx

)m

xr
)

.

Upon invoking the above expressions for

(

(1 + x)
d

dx

)m+1

xr and of

(

(1 + x)
d

dx

)m

xr in

powers of (1 + x)/x, we get that

m+1
∑

n=0

(r)na
(m+1)
n xr−n(1 + x)n = (1 + x)

d

dx

m
∑

n=0

(r)na
(m)
n xr−n(1 + x)n

=
m
∑

n=0

(r)na
(m)
n

(

(r − n)xr−n−1(1 + x)n+1 + nxr−n(1 + x)n
)

=

m
∑

n=0

(r)n+1a
(m)
n xr−(n+1)(1 + x)n+1 +

m
∑

n=0

n(r)na
(m)
n xr−n(1 + x)n

=

m+1
∑

n=0

(r)n

(

a
(m)
n−1 + na(m)

n

)

xr−n(1 + x)n.

To go from the penultimate line to the last one above, we shifted the summation index in the

first sum by one unit. Then we defined a
(m)
−1 = 0, a

(m)
m+1 = 0 and extended the limits of both

sums from 0 to m+1. This result then gives the recurrence for the unknown coefficients, which

is the recurrence for the augmented Stirling numbers of the second kind, S
(m)
n . We therefore

conclude that {a(m)
n = S

(m)
n : 0 ≤ m, 0 ≤ n ≤ m} and Lemma 3 is proved. �

Now, to obtain the generalization requested in (b) of the problem statement, we invoke
Lemmas 2 and 3 and proceed as we did to prove identity (a). We then get the following two
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equations:

∑

k≥0

(−1)r−kkm
(

r

k

)

fk
p

fk
p+q

βqk =

m
∑

n=0

(r)nS
(m)
n

(

− fq
fp+q

αp

)r−n( fp
fp+q

βq

)n

=

m
∑

n=0

(−1)(q+1)n+r(r)nS
(m)
n

fn
p f

r−n
q

f r
p+q

αpr−(p+q)n;

∑

k≥0

(−1)r−kkm
(

r

k

)

fk
p

fk
p+q

αqk =

m
∑

n=0

(−1)(q+1)n+r(r)nS
(m)
n

fn
p f

r−n
q

f r
p+q

βpr−(p+q)n.

Adding together these two equations and multiplying the result by (−1)rf r
p+q then gives the

sought generalization

∑

k≥0

(−1)kkm
(

r

k

)

fk
p f

r−k
p+q lqk =

m
∑

n=0

(−1)(q+1)n(r)nS
(m)
n fn

p f
r−n
q lpr−(p+q)n.

This result agrees with the identity in (a) when m = 1 since S
(1)
0 = 0, S

(1)
1 = 1 and (r)1 = r.

Also solved by Paul S. Bruckman and Kenneth Davenport.
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