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PROBLEMS PROPOSED IN THIS ISSUE

H-850 Proposed by Hideyuki Ohtsuka, Saitama, Japan
For integers m, n, r, and s, let

−−→
AB = (Fm, Fm+r, Fm+s) and

−→
AC = (Fn, Fn+r, Fn+s).

Prove that the area of the triangle ABC is

1

2

√

F 2
r + F 2

s + F 2
r−s|Fn−m|.

H-851 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, Romania and Neculai
Stanciu, Buzău, Romania

Let (an)n≥1 and (bn)n≥1 be sequences of positive real numbers such that limn→∞ an+1/(n
ran) =

a ∈ R
∗
+ and limn→∞ bn+1/(n

sbn) = b ∈ R
∗
+, where r, s ∈ R+. Compute

lim
n→∞

(

n
√
an · n+1

√
Fn+1

nr+s
−

n+1
√
an+1 · n

√
Fn

(n+ 1)r+s

)

n
√

bn.

H-852 Proposed by Robert Frontczak, Stuttgart, Germany
Let (Bn)n≥0 denote the Bernoulli numbers. Show that for all r ≥ 1 and n ≥ 3,

n
∑

k=0

(

n

k

)

FrkLr(n−k)BkBn−k =

{

(1− n)BnBrn, n even;
−nBn−1Frn, n odd.

and
n
∑

k=0

(

n

k

)

(21−k − 1)(21−(n−k)−1 − 1)FrkLr(n−k)BkBn−k =

{

(1− n)BnBrn, n even;
0, n odd.
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H-853 Proposed by Ángel Plaza and Sergio Falcón, Gran Canaria, Spain
Let Ln be the nth Lucas number given by the recurrence Ln+2 = kLn+1 + Ln for all n ≥ 0

with L0 = 2 and L1 = k. Prove that

(i)
n
∑

j=1

L2
j

Lj + 1
≥ (Ln + Ln+1 − k − 2)2

k
√

kn(Ln + Ln+1 + k(n− 1)− 2)
;

(ii)

n
∑

j=1

L4
j

L2
j + 1

≥ (L2n+1 + k((−1)n − 2))2

k
√

kn(L2n+1 + k(n − 2 + (−1)n))
.

SOLUTIONS

Closed form expressions for some sums of products

H-817 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 56, No. 1, February 2018)

For n ≥ 1 find closed form expressions for the sums

(i)

n
∑

k=1

F2kF2k−1F2k+1−1 · · ·F2n−1;

(ii)

n
∑

k=1

F2k−3L2k−1L2k+1−1 · · ·L2n−1;

(iii)

n
∑

k=1

(−1)kF2kL2k−1L2k+1−1 · · ·L2n−1;

(iv)

n
∑

k=1

(−1)kG2k+kL2k−1L2k+1−1 · · ·L2n−1,

where {Gn}n≥1 satisfies Gn+2 = Gn+1 +Gn for n ≥ 1 with arbitrary G1 and G2.

Solution by the proposer

First, we show the following lemma.

Lemma. Let a0 = 0 and bn 6= 0 for n ≥ 1. For n ≥ 1, we have
n
∑

k=1

(

ak
bk

− ak−1

) n
∏

j=k

bj = an.

Proof of the lemma. For n = 1, we have

LS =

(

a1
b1

− a0

)

b1 = a1 = RS.

For n ≥ 2, we have

n
∑

k=1

(

ak
bk

− ak−1

) n
∏

j=k

bj =
n−1
∑

k=1



ak

n
∏

j=k+1

bj − ak−1

n
∏

j=k

bj



+

(

an
bn

− an−1

)

bn

= an−1bn − a0

n
∏

j=1

bj + an − an−1bn = an.

We also use the identities:
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(1) F2n = FnLn (see [1](13));
(2) Ln = Fn+1 + Fn−1 (see [1](6));
(3) Gn+1Fm +GnFm−1 = Gn+m (see [1](8)).

(i) If an = F2n+1−2 and bn = F2n−1, then ak/bk − ak−1 equals

F2k+1−2

F2k−1

− F2k−2 = L2k−1 − F2k−2 = F2k by (1) and (2).

Using the lemma, we obtain
n
∑

k=1

F2k

n
∏

j=k

F2j−1 = F2n+1−2.

(ii) If an = F2n+1−2 and bn = L2n−1, then ak/bk − ak−1 equals

F2k+1−2

L2k−1

− F2k−2 = F2k−1 − F2k−2 = F2k−3 by (1).

Using the lemma, we obtain
n
∑

k=1

F2k−3

n
∏

j=k

L2j−1 = F2n+1−2.

(iii) If an = (−1)nF2n+1−2 and bn = L2n−1, then ak/bk − ak−1 equals

(−1)kF2k+1−2

L2k−1

− (−1)k−1F2k−2 = (−1)kF2k−1 + (−1)kF2k−2 = (−1)kF2k by (1).

Using the lemma, we obtain
n
∑

k=1

(−1)kF2k

n
∏

j=k

L2j−1 = (−1)nF2n+1−2.

(iv) If an = (−1)nGn+1F2n+1−2 and bn = L2n−1, then ak/bk − ak−1 equals

(−1)kGk+2F2k+1−2

L2k−1

− (−1)kGk+1F2k−2 = (−1)k(Gk+2F2k−1 +Gk+1F2k−2)

= (−1)kG2k+k by (3).

Using the lemma, we obtain
n
∑

k=1

(−1)kG2k+k

n
∏

j=k

L2j−1 = (−1)nGn+2F2n+1−2.

Note by the proposer: Putting an = F 2
2n+1−2 and bn = L2

2n−1 in the lemma, we get

n
∑

k=1

F2kF2k−3

n
∏

j=k

L2
2j−1 = F 2

2n+1−2.

[1] S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Dover, 2008.

Also solved by Dmitry Fleischman and Raphael Schumacher.
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Some telescopic series

H-818 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 56, No. 1, February 2018)

Determine
∞
∑

n=1

1

FnFn+1Fn+2Fn+4
and

∞
∑

n=1

1

FnFn+2Fn+3Fn+4
.

Solution by the proposer

Let

S =
∞
∑

n=1

1

FnFn+1Fn+2Fn+4
and T =

∞
∑

n=1

1

FnFn+2Fn+3Fn+4
.

We have

S + T =
∞
∑

n=1

Fn+3 + Fn+1

FnFn+1Fn+2Fn+3Fn+4

=

∞
∑

n=1

Fn+4 − Fn+1

FnFn+1Fn+2Fn+3Fn+4

=
∞
∑

n=1

(

1

FnFn+1Fn+2Fn+3
− 1

Fn+1Fn+2Fn+3Fn+4

)

=
1

F1F2F3F4
=

1

6
,

and

S − T =
∞
∑

n=1

Fn+3 − Fn+1

FnFn+1Fn+2Fn+ 3Fn+4

=
∞
∑

n=1

Fn+2

FnFn+1Fn+2Fn+3Fn+4

=

∞
∑

n=1

1

FnFn+1Fn+3Fn+4

=
∞
∑

n=3

1

Fn−2Fn−1Fn+1Fn+2

=

∞
∑

n=3

1

F 4
n − 1

(by Gelin-Cesàro identity)

=
35− 15

√
5

18
(from Advanced Problem H-783(iii)).

Therefore, we obtain

S =
38 − 15

√
5

36
and T =

−32 + 15
√
5

36
.

Also solved by Dmitry Fleichman, Raphael Schumacher, and Albert Stadler.
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Evaluating a definite integral

H-819 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania (Vol. 56, No. 1, February 2018)

Let f : R → R be a continuous and odd function and g : R∗
+ −→ R be a continuous function

such that g(1/x) = −g(x) for all x ∈ R
∗
+. Compute

∫ α

−β

dx

(1 + x2)(1 + e(f◦g)(x))
,

where α = (1 +
√
5)/2 and β = (1−

√
5)/2.

Solution by Ravi Prakash, New Delhi, India

Note that

β =
1−

√
5

2
= − 2√

5 + 1
= − 1

α
so β = − 1

α
.

Also,

(f ◦ g)
(1

t

)

= f
(

g
(1

t

))

= f(−g(t)) = −f(g(t)) = −(f ◦ g)(t).
Let

I =

∫ α

−β

dx

(1 + x2)[1 + e(f◦g)(x)]
. (1)

Make the substitution

x =
1

t
, dx = − 1

t2
dt

to get

I =

∫ 1

α

α

(−1/t2)dt

(1 + 1/t2)[1 + e−(f◦g)(t)]
=

∫ α

1

α

e(f◦g)(x)dx

(1 + x2)[1 + e(f◦)(x)]
. (2)

Adding (1) and (2), we get

2I =

∫ α

1

α

1 + e(f◦g)(x)

(1 + x2)[1 + e(f◦g)(x)]
dx

=

∫ α

1

α

dx

1 + x2
= tan−1 x

∣

∣

∣

x=α

x= 1

α

= tan−1(α)− tan−1
( 1

α

)

= tan−1

[

α− ( 1
α
)

1 + α( 1
α
)

]

= tan−1
(1

2

)

.

Therefore,

I =
1

2
tan−1

(1

2

)

.

Also solved by Dmitry Fleischman, Robert Frontczak, Ángel Plaza, Santiago
Alzate Suarez and Kevin Daŕıo López Rodŕıguez (jointly), Raphael Schumacher,
Albert Stadler, Nicuşor Zloata, and the proposers.
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Evaluating a Fibonacci limit

H-820 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania

If a, b, c ∈ R+, compute

lim
n→∞

(

n+1

√

(2n + 1)!!F b
n+1

)a+1

−
(

n
√

(2n − 1)!!F b
n

)a+1

(

n
√

n!Lc
n

)a .

Solution by the proposers

We have

lim
n→∞

n
√

(2n − 1)!!F − nb

n
= lim

n→∞

n

√

(2n− 1)!!F b
n

nn

= lim
n→∞

(2n+ 1)!!F b
n+1

(n+ 1)n+1
· nn

(2n− 1)!!F b
n

(by Cauchy-D’Alembert)

= lim
n→∞

(

2n+ 1

n+ 1

)(

Fn+1

Fn

)b( n

n+ 1

)n

=
2αb

e
,

where as usual, α = (1 +
√
5)/2 and β = (1−

√
5)/2. Analogously, we obtain that

lim
n→∞

n
√

n!Lc
n

n
=

αc

e
.

We denote

un =

n+1

√

(2n + 1)!!F b
n+1

n
√

(2n− 1)!!F b
n

.

We have

lim
n→∞

un = lim
n→∞





n+1

√

(2n+ 1)!!F b
n+1

n+ 1





(

n
n
√

(2n− 1)!!F b
n

)

·
(

n+ 1

n

)

=
2αb

e
· e

2αb
· 1,

so limn→∞ un = 1. In particular,

lim
n→∞

un − 1

lnun
= 1.

Next,

lim
n→∞

unn = lim
n→∞

(2n+ 1)!!F b
n+1

(2n− 1)!!F b
n

· 1

n+1

√

(2n+ 1)!!F b
n+1

= lim
n→∞

(

Fn+1

Fn

)b(2n + 1

n+ 1

)

n+ 1

n+1

√

(2n + 1)!!F b
n+1

= αb · 2 · e

2αb
= e.
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Hence,

lim
n→∞

(

n+1

√

(2n + 1)!!F b
n+1

)a+1

−
(

n
√

(2n − 1)!!F b
n

)a+1

(

n
√

n!Lc
n

)a

= lim
n→∞

( n
√

(2n − 1)!!F b
n)

a+1

( n
√

n!Lc
n)

a
(ua+1

n − 1)

= lim
n→∞

(

n

√

(2n + 1)!!F b
n+1

)a+1

( n
√

n!Lc
n)

a
· u

a+1
n − 1

lnua+1
n

· lnua+1
n

= lim
n→∞





n+1

√

(2n + 1)!!F b
n+1

n+ 1





a+1
(

n
n
√

n!Lc
n

)a(
n+ 1

n

)a+1 ua+1
n − 1

lnua+1
n

· lnun(a+1)
n

=
2a+1αb(a+1)

ea+1
· ea

αca
· 1 · 1 · ln( lim

n→∞
(unn)

a+1)

=
2a+1

e
α(b−c)a+b · (a+ 1) ln( lim

n→∞
unn)

=
(a+ 1)2a+1αa(b−c)+b

e
.

Also solved by Kenny B. Davenport, Dmitry Fleischman, and Raphael Schu-
macher.

Late Acknowledgement: Kenny B. Davenport solved Advanced ProblemH-811. The
Editor apologies for the oversight.

FEBRUARY 2020 95


