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PROBLEMS PROPOSED IN THIS ISSUE

H-850 Proposed by Hideyuki Ohtsuka, Saitama, Japan
For integers m, n, r, and s, let

AB = (Fo, Fprs Frovs) and  AC = (Fy, Foiry Foss)-
Prove that the area of the triangle ABC' is

1
S\ F2+ F2 4 F2 [P,

H-851 Proposed by D. M. Batinetu-Giurgiu, Bucharest, Romania and Neculai
Stanciu, Buzau, Romania

Let (an)n>1 and (b, )n>1 be sequences of positive real numbers such that lim,, o0 an11/(n"ay) =
a € RY and limy, o bpt1/(n°b,) = b € RY, where r,s € R.. Compute

lim (M "Wt R/ nFn) /5
_ v -

N— 60 nrts (Tl + 1)7”+8

H-852 Proposed by Robert Frontczak, Stuttgart, Germany
Let (By)n>0 denote the Bernoulli numbers. Show that for all » > 1 and n > 3,

" /n | (1 —=n)B,Br,, n even;
];) <k> FokLy(n—i)BiBn—k = { By \Fr. 1 odd.
and

=~ (n 1-k 1—(n—k)—1 (1_n)BnBrna n even;
2. <k><2 — )2tk —1>FrkLr<n_k>Ban_k={ 0. e
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H-853 Proposed by Angel Plaza and Sergio Falcon, Gran Canaria, Spain
Let L, be the nth Lucas number given by the recurrence Lj492 = kL,1+1 + L, for all n > 0
with Lo = 2 and L; = k. Prove that

. - L? (Ln + Ln+1 —k— 2)2 .
) ; Lj+1 = ken/kn(Ly + Lo + k(n — 1) — 2)
o L (Lonss + (1)~ 2))?

() Z Li+1 - kv/kn(Long1 + k(n — 2+ (1))

j=1
SOLUTIONS

Closed form expressions for some sums of products

H-817 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 56, No. 1, February 2018)
For n > 1 find closed form expressions for the sums

n
() D ForFye 1 Fyrnr_y -~ Fany;
k=1
n
(11) Z F2k_3L2k_1L2k+1_1 et L2”—1;
k=1
n

(iif) Y (—1)F FyrLoe_y Lors1_y -+ Lon_y;

k=1
n

(iv) Z(—l)kG2k+kL2k—1L2k+l—1 o Lon_y,
k=1
where {G), }n>1 satisfies G2 = Gpy1 + Gy, for n > 1 with arbitrary G; and Gs.
Solution by the proposer

First, we show the following lemma.

Lemma. Let ag =0 and b, # 0 for n > 1. For n > 1, we have

Proof of the lemma. For n = 1, we have

LS = <ﬂ—a0> bl :alzRS.
by

For n > 2, we have

(o)l

k=1 j=k k=1 j=k+1 j=k

n
= anp_1b, —ag H bj + an — ap—1b, = ap.
i=1

We also use the identities:
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(1) Fy, = F, Ly, (see [1](13));

(2) Ly = Fup1 + F—1 (see [1](6));

(3) Gni1Fm + GrFp—1 = Gt (see [1](8)).
I

F2k+1_2
FQk_l

Using the lemma, we obtain

— F2k_2 = L2k_1 — F2k_2 = F2k by (1) and (2)

n n
E F2k H F2j_1 == F2n+1_2.
k=1 j=k

(ii) If ay = Fyn+1_9 and b, = Lon_1, then ag /by — ar_1 equals
F2k+1_2
L2k_1

Using the lemma, we obtain

— FQk_Q = sz_l - FQk_Q - F2k—3 by (1)

n n
ZFQk_g H L2j_1 == F2n+1_2.
k=1 j=k
(iii) If ap, = (—=1)"Fynt+1_9 and b, = Lan_1, then ay /by — ax_1 equals

— (1) Py g = (=1 Fyr_y + (1) "Foe g = (-1)*Fye by (1).

Using the lemma, we obtain

n

n
> (0FFy [ ] Loior = (—1)" Fynra s,
k=1 j=k

(iv) If ay, = (—1)"Gpy1Fon+1_o and by, = Lon_1, then ay /by — ar_1 equals

(—1)FGrpaFprr1_y

I — (D CrprFory = (—1)M(Gry2Foe_y + Gra1 Foy)
2k 1

= (=1)*Garyp, by (3).

Using the lemma, we obtain

n n
D (1 Goeiy [[ Laimt = (—1)"Grya Fonsr .
k=1 Jj=k

Note by the proposer: Putting a,, = F22n+1_2 and b, = L3,_; in the lemma, we get
n n
2 2
ZF2kF2k_3 H L2j_1 — F2n+1_2.
k=1 j=k

[1] S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Dover, 2008.
Also solved by Dmitry Fleischman and Raphael Schumacher.
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Some telescopic series

H-818 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 56, No. 1, February 2018)

Determine
o0

9]
1
E and E .
n—1 F, Fn+1Fn+2Fn+4 n=1 FnFn+2Fn+3Fn+4

Solution by the proposer

Let -
S- 27

n n+an+2Fn+4 n+2Fn+3Fn+4

> 1
d T=
an EzﬂF
n=1
We have

Foys + Foy
B Fno B3P

S+T

|
|M8

Fn+4 - Fn+1
1 o B3 Frogg

MEB [ MEB

1 1
<F Fn+1Fn+2Fn+3 Fn+1Fn+2Fn+3Fn+4>
11
IR F3Fy 6

n=1

and

Fn+3 - Fn+1

n

5

[
WE

o Eo By FypoFn+ 3F, 14
n—1 FnFn+1Fn+2Fn+3Fn+4
- Y rr
= FnFn1Foy3Foga
> 1
B n§=:3 Fn—ZFn—an+1Fn+2
=1
= 1 (by Gelin-Cesaro identity)
— Fn -1
n=3
-1
= % (from Advanced Problem H-783(iii)).
Therefore, we obtain
38 — 155 —-32 4 15v/5
S — 7\/_ and T = +7\/_
36 36

Also solved by Dmitry Fleichman, Raphael Schumacher, and Albert Stadler.
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Evaluating a definite integral

H-819 Proposed by D. M. Batinetu-Giurgiu, Bucharest and Neculai Stanciu,
Buzau, Romania (Vol. 56, No. 1, February 2018)

Let f : R — R be a continuous and odd function and g : R} — R be a continuous function
such that g(1/x) = —g(x) for all x € R*. Compute

/O‘ dx

5 (14 22)(1 + elfoa)(@))’
where a = (1 +/5)/2 and 8 = (1 — /5)/2.

Solution by Ravi Prakash, New Delhi, India

Note that
ﬁzl_\/gz— 2 2—1 SO ﬁ:—l.
2 VE+1 «@ o
Also,
1
(Foa(7)=1(s(3)) = = —f(g(t) = =(f o)1)
Let
1
/ (1+ZL'2 1—|—e(f°9)( )] ( )
Make the substitution
1 1
r=- do = ——dt
t’ 12
to get
. /i (~1/82)dt _ / 9@ o)
Ja (L 1/822)[1 4 e~ U] 1 (14 22)[1+ eloE)]

Adding (1) and (2), we get

a (fog)(x)
o] — / Lte d
1 (14 22)[1 + elfog)(@)

Therefore,

Also solved by Dmitry Fleischman, Robert Frontczak, Angel Plaza, Santiago
Alzate Suarez and Kevin Dario Lépez Rodriguez (jointly), Raphael Schumacher,
Albert Stadler, Nicusor Zloata, and the proposers.
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Evaluating a Fibonacci limit

H-820 Proposed by D. M. Batinetu-Giurgiu, Bucharest and Neculai Stanciu,
Buzau, Romania
If a,b,c € Ry, compute

a+1 a
<”ﬂ1/(2n + 1)!!F;;+1) . (v/(zn - 1)!!F,2> "
I .
ns60 (v/nlLs)"

Solution by the proposers

We have
Y(2n — DNF —nb o/ (2n — )NEFD
lim \/( i ) L lim 7( i E
n—o00 n n—o0o nmn
(2n+ DIEY,, n"

= nh_)rrgo r ) @0 = 1IE (by Cauchy-D’Alembert)

i 2n +1 Foi b/ n \" 2ab
= lim _Z
n—oo \ N+ 1 F, n+1 e’

where as usual, a = (14 +/5)/2 and 8 = (1 — v/5)/2. Analogously, we obtain that

m_ac

lim = —.
n—o0o n e
We denote
" (2n + DIEY
Uy = .
" v/ (2n — HIED
We have
y . " (2n+ DIEL n nal
et = I nt1 Ven-nuEe ) \ n
2 b
_ 2 e
e 2alb
so lim,, oo u, = 1. In particular,
.oup—1
lim =1.

n—oo Inwu,

Next,

on + IE? 1
lim u) = lim ( )M Frv

n—00 n—oo (2n — 1)N1FP . "/ (2n + 1)HF6+1
NEY
li <Fn+1>b<2n+1> ntl
= 1m
n—oo \  F, n+1 n i/ (2n + 1)!!F3+1

b e
@ 2ab

€.
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Hence,

a+1 a+1
i ( /(20 + 1)!!Fnb+1) - ({‘/(271 - 1)!!F,2)
im >
n—00 ( {L/n!Lg)
/(@0 — DY)«
— lim ( (271 1) Fn) (U?L—H _ 1)
n—oo (Y/nlLg)e
a+1
(Rfen+nur,) yen g
= lim L

n—00 ({/nlLg)e Clnugtt

a+1
"/ (2n + DIFY, ( n ) <n+1>“+1 uptt =1 et

= i (
nh_)n(;o n+1 ¢/nlLe n Inud™! iy
2a+1ab(a+1) e® ) 1
= T . ﬁ -1-1- ln(nll_{I;O(UZ)a )
2a+1
= = a9 (4 4 1) In( lim u?)
e n—00

(a + 1)2a+1aa(b—0)+b

(&

Also solved by Kenny B. Davenport, Dmitry Fleischman, and Raphael Schu-
macher.

Late Acknowledgement: Kenny B. Davenport solved Advanced Problem H-811. The
Editor apologies for the oversight.
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