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Each problem or solution should be typed on separate sheets. Solutions to problems in this
issue must be received by August 15, 2020. If a problem is not original, the proposer should
inform the Problem Editor of the history of the problem. A problem should not be submitted
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to
include references rather than quoting “well-known results.”

The content of the problem sections of The Fibonacci Quarterly are all available on the web
free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-835 Proposed by David M. Bloom, Brooklyn College of CUNY, Brooklyn,
NY.
(Vol. 35.3, August 1997)

In a sequence of coin tosses, a single is a term (H or T) that is not the same as any adjacent
term. For example, in the sequence HHTHHHTH, the singles are the terms in positions 3, 7,
and 8. Let S(n, r) be the number of sequences of n coin tosses that contain exactly r singles.
If n ≥ 0, and p is prime, find the value modulo p of 1

2 S(n + p− 1, p − 1).

Editor’s Note: This is another old problem whose solution has never appeared, so we would
like to invite the readers to solve it.

B-1261 Proposed by Robert Frontczak, Landesbank Baden-Württemberg,
Stuttgart, Germany.

Show that
∞
∏

n=0

L2
3n + 1

L2
3n + 3

=
∞
∏

n=0

5F 2
3n − 3

5F 2
3n − 1

, and determine the exact value of the limit.
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B-1262 Proposed by D. M. Bătineţu-Giurgiu, Mateo Basarab National College,
Bucharest, Romania, and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.

Compute lim
n→∞

(

3n+3
√

(2n + 1)!!Fn+1 − 3n
√

(2n − 1)!!Fn

)

3
√
n2.

B-1263 Proposed by Stanley Rabinowitz, Milford, NH.

Let Pn denote the nth Pell number. Find a recurrence relation for Xn = Fn + Pn.

B-1264 Proposed by Pridon Davlianidze, Tbilisi, Republic of Georgia.

Prove that

(A)
∞
∏

n=2

(

1 +
1

F 2
2n−1

)

=
α2

2

(B)

∞
∏

n=2

(

1− 1

F 2
2n

)

=
α2

3

(C)
∞
∏

n=2

(

1− 1

F 2
2n−1

)(

1 +
1

F 2
2n

)

=
α

2

B-1265 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

For any integer n ≥ 1, find a closed form expression for the sum

n
∑

k=1

k
∏

j=1

(

L2j+1 + L2j
)

.

SOLUTIONS

An Oldie from the Vault

B-756 Proposed by Stanley Rabinowitz, Chelmsford, MA.
(Vol. 32.1, February 1994)

Find a formula expressing the Pell number Pn in terms of Fibonacci and/or Lucas numbers.

Solution 1 by G. C. Greubel, Newport News, VA.

Consider the generating functions of the Pell, Pell-Lucas, Fibonacci, and Lucas polynomials,
which are given by

∞
∑

n=0

Pn(x)t
n =

t

1− 2xt− t2
,

∞
∑

n=0

Qn(x)t
n =

2(1 − xt)

1− 2xt− t2
,

∞
∑

n=0

Fn(x)t
n =

t

1− xt− t2
,

∞
∑

n=0

Ln(x)t
n =

2− xt

1− xt− t2
.

Two relations will be given in this solution. For the first consider

t

1− 2xt− t2
− t

1− xt− t2
= x · t

1− 2xt− t2
· t

1− xt− t2
,

82 VOLUME 58, NUMBER 1



ELEMENTARY PROBLEMS AND SOLUTIONS

which gives
∞
∑

n=0

[Pn(x)− Fn(x)] t
n = x

( ∞
∑

i=0

Pi(x)t
i

)





∞
∑

j=0

Fj(x)t
j



 .

After comparing coefficients of tn, we obtain

Pn(x) = Fn(x) + x
n
∑

s=0

Pn−s(x)Fs(x).

The second relation follows from

2− xt

1− 2xt− t2
− 2− xt

1− xt− t2
= x · t

1− 2xt− t2
· 2− xt

1− xt− t2
,

which leads to

2Pn+1(x)− xPn(x) = Ln(x) + x
n
∑

s=0

Pn−s(x)Ls(x).

When x = 1 these relations reduce to

Pn = Fn +

n
∑

s=0

Pn−sFs, and 2Pn+1 − Pn = Ln +

n
∑

s=0

Pn−sLs.

Solution 2 by T. Goy, Vasyl Stefanyk Precarpathian National University, Ivano-
Frankivsk, Ukraine.

Define D0 = 1, and let

Dn = perm



















F1 1 0 · · · 0 0
F2 F1 1 · · · 0 0
F3 F2 F1 · · · 0 0
...

...
...

. . .
...

...
Fn−1 Fn−2 Fn−3 · · · F1 1
Fn Fn−1 Fn−2 · · · F2 F1



















.

It is easy to verify that D1 = P1 and D2 = P2, and Dn =
∑n

i=1 FiDn−i. It follows that

Dn = F1Dn−1 +
n
∑

i=2

(

Fi−1 + Fi−2

)

Dn−i

= Dn−1 +
n−1
∑

i=1

FiDn−1−i +
n−2
∑

i=0

FiDn−2−i

= 2Dn−1 +Dn−2.

Since Dn satisfies the Pell recurrence relation with D1 = P1 and D2 = P2, we determine that
Dn = Pn for all integers n ≥ 1. Since

perm















a1 a0 · · · 0 0

a2 a1
. . . 0 0

...
...

. . .
...

...
an−1 an−2 · · · a1 a0
an an−1 · · · a2 a1















=
∑

t1,t2,...,tn≥0

t1+2t2+···+ntn=n

an−t1−···−tn
0

(t1 + · · ·+ tn)!

t1! · · · tn!
at11 a

t2
2 · · · atnn ,
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we obtain

Pn =
∑

t1,t2,...,tn≥0

t1+2t2+···+ntn=n

(t1 + · · ·+ tn)!

t1! · · · tn!
F t1
1 F t2

2 · · ·F tn
n .

Editor’s Notes: Frontczak derived a similar result for the generalized Pell sequence with
arbitrary initial values, thereby obtaining the same result in Solution 1. Using a different
method, Edgar derived a formula in terms of compositions of n that can be expressed as

Pn =

n
∑

k=1

∑

i1,i2,...,ik≥1

i1+i2+···+ik=n

Fi1Fi2 · · ·Fik ,

which is equivalent to Solution 2. Fedak and the proposer compared the Binet’s formulas of
Pn to those of Fn and Ln. Fedak found that

Pn =

√
5 (γn + δn)Fn + (γn − δn)Ln

4
√
2

,

where γ = 1+
√
2

α
and δ = 1−

√
2

β
, and the proposer proved that Pn = round

(

rn(Ln+Fn

√
5)

4
√
2

)

,

where r = 2(1+
√
2)

1+
√
5
.

Also solved by Tom Edgar, I. V. Fedak, Robert Frontczak, Raphael Schumacher,
and the proposer.

A Not-So-Obvious Application of Cauchy-Schwarz Inequality

B-1241 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National Uni-
versity, Ivano-Frankivsk, Ukraine.
(Vol. 57.1, February 2019)

For all positive integers n, prove that

Fn+2

Ln+2
+

Fn+1

Ln+1
+

Fn

Ln+1 + Fn+2
> 1.

Solution by Hideyuki Ohtsuka, Saitama, Japan.

By Cauchy-Schwarz inequality, for a, b, c > 0, we have

[a(a+ 2b) + b(b+ 2c) + c(c+ 2a)]

(

a

a+ 2b
+

b

b+ 2c
+

c

c+ 2a

)

≥ (a+ b+ c)2.

From the above inequality and the identity

a(a+ 2b) + b(b+ 2c) + c(c+ 2a) = a2 + b2 + c2 + 2ab+ 2bc+ 2ca = (a+ b+ c)2,

we obtain
a

a+ 2b
+

b

b+ 2c
+

c

c+ 2a
≥ 1,

where equality occurs if and only if a = b = c. Using the identity Lm = Fm+1 +Fm−1, we find

Fn+2

Ln+2
+

Fn+1

Ln+1
+

Fn

Ln+1 + Fn+2
=

Fn+2

Fn+3 + Fn+1
+

Fn+1

Fn+2 + Fn

+
Fn

Fn + 2Fn+2

=
Fn+2

Fn+2 + 2Fn+1
+

Fn+1

Fn+1 + 2Fn

+
Fn

Fn + 2Fn+2
> 1.
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Editor’s Notes: Bataille and Metcalfe showed (independently) that the inequality is equivalent
to L3n+1 + 2(−1)nLn > 0, and G. C. Gruebel reduced it to F 3

n+1 − F 2
nFn−1 > 0. Both

inequalities are easy to establish.

Also solved by Michel Bataille, Brian Beasley, Brian Bradie, Kenny B. Daven-
port, Dmitry Fleischman, G. C. Greubel, Wei-Kai Lai and John Risher (student)

(jointly), Ehren Metcalfe, Ángel Plaza, and the proposer.

Generalizing a Curious Sum

B-1242 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 57.1, February 2019)

Let r1, r2, . . . , rn be positive even integers. Prove that

∑

ǫ1,··· ,ǫn∈{−1,1}
Fǫ1r1+···+ǫnrn = 0, and

∑

ǫ1,··· ,ǫn∈{−1,1}
Lǫ1r1+···+ǫnrn = 2

n
∏

k=1

Lrk .

Solution by Robert Frontczak, Landesbank Baden-Württemberg, Stuttgart, Ger-
many.

Let {Gn}n≥0 be the generalized Fibonacci sequence defined by Gn = Gn−1+Gn−2 for n ≥ 2,
with initial values G0 and G1. We use induction on n to prove that

∑

ǫ1,··· ,ǫn∈{−1,1}
Gǫ1r1+···+ǫnrn = G0

n
∏

k=1

Lrk .

In our proof, we will use the following fact about {Gn}n≥0 (see [1] for instance):

Gn+m + (−1)mGn−m = GnLm.

For n = 1 and any even integer r1, we have Gr1 + G−r1 = G0+r1 + (−1)r1G0−r1 = G0Lr1 .
Assume the identity is true for some fixed n ≥ 1. Then, for any even integers r1, r2, . . . , rn+1,

∑

ǫ1,··· ,ǫn,ǫn+1∈{−1,1}
Gǫ1r1+···+ǫn+1rn+1

=
∑

ǫ1,··· ,ǫn∈{−1,1}

(

Gǫ1r1+···+ǫnrn+rn+1
+Gǫ1r1+···+ǫnrn−rn+1

)

=





∑

ǫ1,··· ,ǫn∈{−1,1}
Gǫ1r1+···+ǫnrn



Lrn+1
= G0

n+1
∏

k=1

Lrk .

This completes the induction.

References

[1] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section, Dover Press, New York, 2008.

Also solved by Michel Bataille, Brian Bradie, I. V. Fedak, Dmitry Fleischman, G.
C. Greubel, Ángel Plaza, Raphael Schumacher, and the proposer.
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In Need of a More Complicated Formula

B-1243 Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria,
Spain.
(Vol. 57.1, February 2019)

For any positive integer k, the k-Fibonacci numbers are defined recursively by Fk,0 = 0,
Fk,1 = 1, and Fk,n = kFk,n−1 + Fk,n−2 for n ≥ 2. Prove that

k

n
∑

m=0

Fk,m =

⌊

(
√
k2 + 4 + k)n+1 − 2n+1

2n
√
k2 + 4 (

√
k2 + 4− k)

⌋

.

Editor’s Remark : The identity was an inequality in the proposer’s original proposal. The
section editor mistakenly entered it as an identity, thereby making it a much harder problem.

Solution by Brian Bradie, Christopher Newport University, Newport News, VA.

The given expression is not true in general. For example, with k = 2 and n = 1,

2

1
∑

m=0

F2,m = 2, but

⌊

(
√
8 + 2)2 − 22

2
√
8 (

√
8− 2)

⌋

= 4.

To determine a correct expression, use the recurrence kFk,m = Fk,m+1 − Fk,m−1 to obtain

k

n
∑

m=0

Fk,m = Fk,n+1 + Fk,n − 1.

Now, let αk = k+
√
k2+4
2 and βk = k−

√
k2+4
2 , so that Fk,n =

αn
k
−βn

k

αk−βk
. Observe that αk > k ≥ 1,

and −1 < βk < 0 for all positive integers k. It follows that for all positive integers k and n,

βn+1
k + βn

k = βn
k (1 + βk) < 1 + βk < 1 < αk.

Moreover, for all integers n ≥ 1,

|βn+1
k + βn

k | = |βn
k (1 + βk)| < |βk| = −βk.

Hence, βk − βn+1
k − βn

k < 0. Note that this inequality also holds when n = 0. Therefore,

Fk,n+1 + Fk,n − 1 =
αn+1
k + αn

k − αk − βn+1
k − βn

k + βk
αk − βk

<
αn+1
k + αn

k − αk

αk − βk
<

αn+1
k + αn

k − βn+1
k − βn

k

αk − βk
= Fk,n+1 + Fk,n,

which implies that

Fk,n+1 + Fk,n − 1 =

⌊

αn+1
k + αn

k − αk

αk − βk

⌋

.

Thus,

k
n
∑

m=0

Fk,m =

⌊

(
√
k2 + 4 + k)n + 2(

√
k2 + 4 + k)n−1 − 2n

2n−1
√
k2 + 4 (

√
k2 + 4− k)

⌋

.

The invalidity of the identity was also noticed by I. V. Fedak and Dmitry Fleis-
chman.
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Making It Easier with Lagrange

B-1244 Proposed by Robert Frontczak, Landesbank Baden-Württemberg,
Stuttgart, Germany.
(Vol. 57.1, February 2019)

Prove that following identities for the Fibonacci and Lucas numbers for n ≥ 2:

a)
n−1
∑

k=1

n
∑

j=k+1

(Fk − Fj)
2 = nFnFn+1 − (Fn+2 − 1)2

b)

n−1
∑

k=1

n
∑

j=k+1

(Lk − Lj)
2 = n(LnLn+1 − 2)− (Ln+2 − 3)2

c)

n−1
∑

k=1

n
∑

j=k+1

(FkLj − FjLk)
2 =

{

FnFn+1(LnLn+1 − 2)− (Fn+1Ln − 2)2, if n is even,

FnFn+1(LnLn+1 − 2)− F 2
n+1L

2
n, if n is odd.

Solution by Hideyuki Ohtsua, Saitama, Japan.

Let Gn denote either Fn or Ln. We use the following identities [1, Identities 33, 35, and 44]:
n
∑

k=1

Gk = Gn+2 −G2,
n
∑

k=1

G2k = G2n+1 −G1,
n
∑

k=1

G2
k = GnGn+1 −G0G1,

and the Lagrange identity

n−1
∑

k=1

n
∑

j=k+1

(akbj − ajbk)
2 =

(

n
∑

k=1

a2k

)(

n
∑

k=1

b2k

)

−
(

n
∑

k=1

akbk

)2

.

For a) and b), we have

n−1
∑

k=1

n
∑

j=k+1

(Gk · 1−Gj · 1)2 =

(

n
∑

k=1

G2
k

)(

n
∑

k=1

1

)

−
(

n
∑

k=1

Gk

)2

= n(GnGn+1 −G0G1)− (Gn+2 −G2)
2.

Therefore, we obtain the desired identities.
For c), by Lagrange’s identity and FkLk = F2k, we have

n−1
∑

k=1

n
∑

j=k+1

(FkLj − FjLk)
2 =

(

n
∑

k=1

F 2
k

)(

n
∑

k=1

L2
k

)

−
(

n
∑

k=1

F2k

)2

= FnFn+1(LnLn+1 − 2)− (F2n+1 − 1)2.

Using the identity [1, Identity 15a] FaLb = Fa+b + (−1)bFa−b, we have Fn+1Ln = F2n+1 +
(−1)nF1, that is, F2n+1 = Fn+1Ln − (−1)n. Therefore, we obtain the desired identity.

We can improve the result in c). From

FnLn+1 · Fn+1Ln =
[

F2n+1 − (−1)n
][

F2n+1 + (−1)n
]

= F 2
2n+1 − 1,

(F2n+1 − 1)2 = F 2
2n+1 − 2F2n+1 + 1 = F 2

2n+1 − 2
[

FnLn+1 + (−1)n
]

+ 1,

we obtain

FnFn+1(LnLn+1 − 2)− (F2n+1 − 1)2 = 2Fn(Ln+1 − Fn+1) + 2(−1)n − 2.
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Since Ln+1 − Fn+1 = Fn+2 + Fn − Fn+1 = 2Fn, we deduce that

n−1
∑

k=1

n
∑

j=k+1

(FkLj − FjLk)
2 = 4F 2

n + 2(−1)n − 2.

References

[1] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section, Dover Press, New York, 2008.

Also solved by Michel Bataille, Brian Bradie, Kenny B. Davenport, I. V. Fedak,
Dmitry Fleischman, G. C. Greubel, Wei-Kai Lai, Ehren Metcalfe, and the pro-
poser.

The Sum of Multiples of Cubes of Lucas Numbers

B-1245 Proposed by Kenny B. Davenport, Dallas, PA.
(Vol. 57.1, February 2019)

Show that, for any positive integer n,
n
∑

k=1

kL3
k =

5 [(2n + 3)L3n−1 − L3n] + 49

4
− (n+ 2)L3

n−1 − L3
n.

Solution by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

We use induction to prove the identity. The identity clearly holds when n = 1. Let us
assume that it is also true for some integer n ≥ 1. Then for n+ 1 we should prove that

n+1
∑

k=1

kL3
k =

5 [(2n + 5)L3n+2 − L3n+3] + 49

4
− (n+ 3)L3

n − L3
n+1,

or, by induction hypothesis, that

(n+ 1)L3
n+1 =

5 [(2n+ 5)L3n+2 − L3n+3 − (2n+ 3)L3n−1 + L3n]

4

− (n+ 3)L3
n − L3

n+1 + (n+ 2)L3
n−1 + L3

n.

In the last identity the first fraction is equal to 5(n + 2)L3n, since L3n+2 = 3L3n−1 + 2L3n−2,
and L3n = L3n−1 + L3n−2. So, we have to prove that

(n+ 1)L3
n+1 = 5(n+ 2)L3n − (n+ 3)L3

n − L3
n+1 + (n+ 2)L3

n−1 + L3
n,

or, equivalently, L3
n+1 + L3

n − L3
n−1 = 5L3n. Since this is Identity 103 in [1, p. 92], the proof

is complete.
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Also solved by Michel Bataille, Brian Bradie, I. V. Fedak, Dmitry Fleischman, G.
C. Greubel, Wei-Kai Lai, Ehren Metcalfe, Raphael Schumacher, Jason L. Smith,
David Terr, and the proposer.
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