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PROBLEMS PROPOSED IN THIS ISSUE

H-639 Proposed by H.-J. Seiffert, Berlin, Germany
The sequences of the Fibonacci and Lucas polynomials are defined by

F0(x) = 0, F1(x) = 1, and Fn+1(x) = xFn(x) + Fn−1(x) for n ≥ 1,

L0(x) = 2, L1(x) = x, and Ln+1(x) = xLn(x) + Ln−1(x) for n ≥ 1,

respectively. Prove that, for all non-zero complex numbers x and all positive integers n,
(a)

2n−1∑
k=0

(
4n− 1− k

k

)
24n−1−2kxkFk(x) = x2n−1L2n−1(x)F2n(4/x),

(b)

2n−1∑
k=0

(
4n− 1− k

k

)
24n−1−2kxkLk(x) = x2n−1(x2 + 4)F2n−1(x)F2n(4/x),

(c)

2n∑
k=0

(
4n + 1− k

k

)
24n+2−2kxkFk(x) = x2n+1F2n(x)L2n+1(4/x),

(d)

2n∑
k=0

(
4n + 1− k

k

)
24n+2−2kxkLk(x) = x2n+1L2n(x)L2n+1(4/x).
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H-640 Proposed by Jayantibhai M. Patel, Ahmedabad, India
For any positive integer n ≥ 2, prove that the value of the following determinant

∣∣∣∣∣∣∣∣∣
−L2n F2n L2

n 2F2n L2
n

F2n −3(3F 2
n + 2(−1)n) F2n 2F 2

n F2n

L2
n F2n −L2n 2F2n L2

n

2F2n 2F 2
n 2F2n −6Fn+1Fn−1 2F2n

L2
n F2n L2

n 2F2n −L2n

∣∣∣∣∣∣∣∣∣
is (L2

n + L2n)5.

H-641 Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, NY
A composition of n is an ordered sequence of positive integers having sum equal to n. The

terms of the sequence are called the parts of n. It is known that the number of compositions
of n is 2n−1 and the number of compositions of n with exactly k parts is equal to

(
n−1
k−1

)
. Here,

we consider a slightly modified concept assuming that there are two kinds of 1. Find:
(i) The number an of compositions of n (for example, a2 = 5 because we have

(2), (1, 1), (1, 1′), (1′, 1), and (1′, 1′));
(ii) the number cn,k of compositions of n with exactly k parts (for example, c4,2 = 5

because we have (1, 3), (1′, 3), (3, 1), (3, 1′), and (2, 2)).

H-642 Walther Janous, Innsbruck, Austria
Determine the limit

lim
n→∞

(L2
n+2

Fn+2
−

n∑
k=1

L2
k

Fk

)
.

SOLUTIONS

Bounding ratios of Fibonacci numbers

H-625 Proposed by Russel Jay Hendel, Townson University, MD
(Vol. 3, no. 2, May 2005)

For an integer m > 0 let Km be the smallest positive integer such that Fn+m < KmFn

holds for all large n. For example, K1 = 2 because Fn < Fn+1 < 2Fn holds for all large n.
Provide an explicit formula for Km.
Solution by H.-J. Seiffert

It is known (see equations (3.22) and (3.24) in [1]) that, for all integers m and n,

Fn+m + (−1)mFn−m = LmFn. (1)

188



ADVANCED PROBLEMS AND SOLUTIONS

We shall prove that, for m > 0,

Km =

{
Lm + 1, if m is odd,

Lm , if m is even.

Suppose that m is odd. If n > m, then, by (1),

LmFn = Fn+m − Fn−m < Fn+m < Fn+m + Fn − Fn−m = (Lm + 1)Fn.

Let m be even. If n > m, then, by (1) again,

(Lm − 1)Fn = Fn+m − (Fn − Fn−m) < Fn+m < Fn+m + Fn−m = LmFn.

This completes the proof of the above statement.
[1] A. F. Horadam & Bro. J. M. Mahon. “Pell and Pell-Lucas Polynomials,” The Fibonacci
Quarterly 23.1 (1985) : 7–20.

Also solved by Paul S. Bruckman and the proposer.

Pell numbers and Fibonacci polynomials

H-626 Proposed by H.-J. Seiffert, Berlin, Germany
(Vol. 43, no. 2, May 2005)

The Fibonacci polynomials are defined by F0(x) = 0, F1(x) = 1, and Fn+2(x) =
xFn+1(x) + Fn(x) for n ≥ 0. Let n be a positive integer.

a. Prove that, for all complex numbers x,

Fn+1(x) + iFn(x) = 4−n
n∑

k=0

(
2n + 1
2k + 1

)
(x− 2i)k(x + 2i)n−k, where i =

√
−1.

b. Deduce the identities

Pn = 2−b
n
2 c

n−1∑
k=0

46|n−2k+1

(−1)b
(n−2k)

4 c
(

2n− 1
2k + 1

)
and Pn = 2−b

(n+1)
2 c

n∑
k=0

46|n−2k

(−1)b
(n−2k−1)

4 c
(

2n + 1
2k + 1

)
,

where Pn = Fn(2) is the nth Pell number.
Solution by the proposer
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It is well-known that

F2n+1(x) =
1√

x2 + 4

((x +
√

x2 + 4
2

)2n+1

−
(x−

√
x2 + 4
2

)2n+1)
.

Applying the Binomial Theorem gives

F2n+1(x) = 4−n
n∑

k=0

(
2n + 1
2k + 1

)
(x2 + 4)kx2n−2k.

Replacing x by
√

ix− 2 (here,
√

ix− 2 can be any of the at most two possible square roots of
ix− 2) and multiplying by (−i)n yields

(−i)nF2n+1(
√

ix− 2) = 4−n
n∑

k=0

(
2n + 1
2k + 1

)
(x− 2i)k(x + 2i)n−k.

Using the known relation F2j(y)/y = i1−jFj(i(y2 + 2)) with y =
√

ix− 2 and noting that
Fj(−x) = (−1)j−1Fj(x), we find

(−i)nF2n+1(
√

ix− 2) =
(−i)n

√
ix− 2

(
F2n+2(

√
ix− 2)− F2n(

√
ix− 2)

)
= Fn+1(x) + iFn(x).

This proves the identity of part a.
Since 1− i =

√
2e−iπ/4 and 1 + i =

√
2eiπ/4, the identity of a with x = 2 implies that

Pn+1 + iPn = 2−n/2
n∑

k=0

(
2n + 1
2k + 1

)
exp

( (n− 2k)πi

4

)
.

Using Euler’s relation eiy = cos y + i sin y, after equating the real and imaginary parts, we find

Pn+1 = 2−n/2
n∑

k=0

(
2n + 1
2k + 1

)
An−2k, (1)

and

Pn = 2−n/2
n∑

k=0

(
2n + 1
2k + 1

)
Bn−2k, (2)
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where Aj = cos(jπ/4) and Bj = sin(jπ/4), for j ∈ Z. Simple calculations show that

Aj =

{
(−1)b(j+1)/4c2bj/2c−j/2, if j 6≡ 2 (mod 4),

0, if j ≡ 2 (mod 4),

Bj =

{
(−1)b(j−1)/4c2bj/2c−j/2, if j 6≡ 0 (mod 4),

0, if j ≡ 0 (mod 4).

Now the identities of part b follows from (1) with n replaced by n− 1 and (2).

Also solved by Paul S. Bruckman.

Revisiting the Cauchy-Schwartz inequality

H-627 Proposed by Slavko Simic, Belgrade, Yugoslavia
(Vol. 43, no. 3, August 2005)

Find all sequences c = {ci}n
i=1, ci = ci(n) such that the inequality

|x∗ −
n∑

i=1

cixi| ≤
√

n− 1

√√√√ n∑
i=1

cix2
i −

( n∑
i=1

cixi

)2
,

holds for all sequences x = {xi}n
i=1 of arbitrary real numbers and arbitrary x∗ ∈ x.

Solution by the proposer

We show that the conditions of the problem are satisfied if and only if ci = 1/n for
i = 1, . . . , n.

Putting xi = 1 for all i = 1, . . . , n, we see that a necessary condition for the given
inequality to hold is (

∑n
i=1 ci)(1−

∑n
i=1 ci) ≥ 0; i.e.,

0 ≤
n∑

i=1

ci ≤ 1. (1)

Also, putting subsequently xi = 0, i 6= s, x∗s = xs = 1, for all s = 1, . . . , n, in the desired
inequality, we obtain

|1− cs| ≤
√

n− 1
√

cs(1− cs), s = 1, . . . , n;
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i.e, cs ≥ 1/n for all s = 1, . . . , n. But these last inequalities together with (1) imply that
cs = 1/n for all s = 1, . . . , n. This last condition is also sufficient since

(n− 1)
(∑n

i=1 x2
i

n
−

(∑n
i=1 xi

n

)2)
=

n− 1
n2

(
n

n∑
i=1

x2
i −

( n∑
i=1

xi

)2
)

=
n− 1
n2

∑
1≤i<j≤n

(xi − xj)2 ≥
1
n2

(
(n− 1)

n∑
i=1

(xi − x∗)2
)
≥ 1

n2

( n∑
i=1

(xi − x∗)
)2

=
(∑n

i=1 xi

n
− x∗

)2

,

which completes the proof.

Sums of three cubes

H-628 Proposed by Juan Pla, Paris, France
(Vol. 43, no. 3, August 2005)

Let us consider the set S of all the sequences {Un}n≥0 satisfying a second order linear
recurrence

Un+2 − aUn+1 + bUn = 0,

with both a and b rational integers, and having only integral values. Prove that for infinitely
many of these sequences their general term Un is a sum of three cubes of integers for any value
of the subscript n.
Solution by the proposer

The starting point is the following easy to prove identity

(x + y + z)3 − (x3 + y3 + z3) = 3(x + y)(y + z)(z + x). (1)

Setting in (1): x = Un+2, y = −aUn+1, z = bUn, we obtain easily

U3
n+2 + (−aUn+1)3 + (bUn)3 = −3abUn+2Un+1Un. (2)

But since we have the classical relation

Un+2Un − U2
n+1 = bn(U2U0 − U2

1 ),

after substitution of UnUn+2 in the right hand side of (2) and simplifications we obtain

U3
n+2 − (−3ab + a3)U3

n+1 + (bUn)3 = −3abn+1(U2U0 − U2
1 )Un+1. (3)

To have a sum of three cubes on the left hand side, we need only that −3ab+b3 be a cube, which
is the case if we set a to be an arbitrary integer and then look for b such that −3b+a2 = a2c3,
or, equivalently, b = a2(1−c3)/3, with an arbitrary integer c. In order for b to be an integer, it
suffices to impose that either a is a multiple of 3 or c ≡ 1 (mod 3). It is now easy to prove that
the sequence whose general term appears in the right hand side of relation (3) does belong to
the set S.
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