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PROBLEMS PROPOSED IN THIS ISSUE

H-926 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Let Gn = αn + α−n. For integers r and s, prove that

∞∏
n=1

L2n + L2r

L2n + L2s
= αr2−s2 Gs

Gr
.

H-927 Proposed by Florică Anastase, Lehliu-Gară, Romania
Prove that, for all n ≥ 2,

L2

(2L1 + L2)2
+

L3

(2L1 + 2L2 + L3)2
+· · ·+ Ln

(2L1 + 2L2 + · · ·+ 2Ln−1 + Ln)2
≤ Ln+2 − L3

L1L3(Ln+2 − L2)
.

H-928 Proposed by Ángel Plaza, Gran Canaria, Spain
Prove that, for nonnegative integers m,

m∑
j=0

(
2m+ 1

m− j

)
F2j+1(2j + 1) =

m∑
j=0

(
2m− 2j

m− j

)
5j−1(5− 2j).

H-929 Proposed by Toyesh Prakash Sharma, Agra, India
For n ≥ 2, show that

Fnα
Fn + Lnα

Ln

2
≥ αLn(Ln lnα− 1)− αFn(Fn lnα− 1)

Ln ln
2 α− Fn ln

2 α
≥ Fn+1α

Fn+1 .

H-930 Proposed by the editor
Let Gn be Fn or Ln. For m ≥ 0 and n ≥ 1, prove the following identities.

n∑
k=1

(
n

k

)
Gk+m−1Hk =

n∑
k=1

G2n+m−2k(Hn −Hk−1),

n∑
k=1

(
n

k

)
G3k+m−3Hk =

n∑
k=1

2n−kG2n+m−2k(Hn −Hk−1),

374 VOLUME 61, NUMBER 4



ADVANCED PROBLEMS AND SOLUTIONS

n∑
k=1

(
n

k

)
2k−1Gk+m−1Hk =

n∑
k=1

G3n+m−3k(Hn −Hk−1),

n∑
k=1

(
n

k

)
3k−1G3k+m−3Hk =

n∑
k=1

2n−kG4n+m−4k(Hn −Hk−1),

where Hn =
∑n

m=1 1/m, H0 = 0, is the nth harmonic number.

SOLUTIONS

H-895 Proposed by Andrei K. Svinin, Irkutsk, Russia
(Vol. 60, No. 2, May 2022)

Consider the Genocchi numbers G2n = (−1)n−12(4n − 1)B2n for n ≥ 1, where B2n is the
Bernoulli number.

(1) Prove that

⌊(n−1)/3⌋∑
j=0

1

2j + 1

(
n− j − 1

2j

)(
4

27

)j

=
4n − 1

3n−1(2n+ 1)
and deduce that

G2n =

⌊(n−1)/3⌋∑
j=0

G
(j)
2n , where G

(j)
2n = (−1)n−1 22j+1

33j−n+1

2n+ 1

2j + 1

(
n− j − 1

2j

)
B2n.

(2) Show that G
(j)
2p ∈ N for all j = 0, 1, . . . , ⌊(p− 1)/3⌋ if and only if p is prime.

(3) Prove that the g.c.d. of the set of numbers {G(j)
2p : j = 0, . . . , ⌊(p− 1)/3⌋} with a fixed

prime p ≥ 5 is the numerator of the Bernoulli number B2p.

No complete solution was submitted for this problem proposal. The problem
remains open. A partial solution was submitted by Dmitry Fleischman. Also, the
proposer informed the editor that in part (2) the “if and only if” statement is
wrong. A counterexample is p = 49.

H-896 Proposed by Mihály Bencze, Braşov, Romania
(Vol. 60, No. 2, May 2022)

Prove that

(1) n

n∑
k=1

F 3
k + (Fn+2 − 1)3 ≤ (n+ 1)FnFn+1(Fn+2 − 1) holds for all n ≥ 1;

(2) n

n∑
k=1

L3
k + (Ln+2 − 1)3 ≤ (n+ 1)(LnLn+1 − 2)(Ln+2 − 1) holds for all n ≥ 1.

Solution by Michel Bataille, Rouen, France

Inequality (2) does not hold for n = 1, 2. Instead of (2), we will prove

(2)′ n
n∑

k=1

L3
k + (Ln+2 − 3)3 ≤ (n+ 1)(LnLn+1 − 2)(Ln+2 − 3),

which was likely the intended inequality.
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For all positive integers n, the following well-known formulas hold (and are easily proved
by induction).

n∑
k=1

Fk = Fn+2 − 1,

n∑
k=1

F 2
k = FnFn+1,

n∑
k=1

Lk = Ln+2 − 3,

n∑
k=1

L2
k = LnLn+1 − 2.

As a consequence, inequalities (1) and (2)′ are the particular cases xk = Fk and xk = Lk,
respectively, of the following general result: If x1, x2, . . ., xn are positive real numbers, then

n
n∑

k=1

x3k +

(
n∑

k=1

xk

)3

≤ (n+ 1)

(
n∑

k=1

x2k

)(
n∑

k=1

xk

)
.

Proof. Equality holds if n = 1, so we assume that n ≥ 2. Let Sm =
∑n

k=1 x
m
k . Due to

homogeneity, we have to prove

nS3 + 1 ≤ (n+ 1)S2, (3)

given that S1 = 1.

We have (n+ 1)S2 − nS3 = S2 + n(S2S1 − S3) = S2 + n ·
n∑

k=1

xk(S2 − x2k).

The Cauchy-Schwarz inequality gives

(n− 1)(S2 − x2k) ≥ (S1 − xk)
2 = (1− xk)

2.

Hence,

(n+ 1)S2 − nS3 ≥ S2 +
n

n− 1

n∑
k=1

xk(1− xk)
2 = S2 +

n

n− 1
(S1 − 2S2 + S3)

=
n

n− 1
− (n+ 1)S2 − nS3

n− 1

and (3) readily follows.

Also solved by Brian Bradie, Dmitry Fleischman, Ángel Plaza, Albert Stadler,
Andrés Ventas, and the proposer.

Editor’s remark: Brian Bradie and Ángel Plaza explicitly mentioned the connection
to Muirhead’s inequality.

H-897 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 60, No. 2, May 2022)

Prove that

(i)

∞∑
n=0

1

L2FnL2Fn+1L2Fn+2

=

∞∑
n=0

1

L2F2nL2F2n+3

;

(ii)
∞∑
n=0

2

L2
Fn

LFn+1LFn+2LFn+3

=
∞∑
n=0

1

L2
Fn

L2
Fn+3

+
1

4
.

Solution by Won Kyun Jeong, Daegu, South Korea

For (i), it follows from the identity LsLt = Ls+t + (−1)sLt−s that we have

L2Fn+1L2Fn+2 = L2Fn+3 + L2Fn .
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Then, we obtain

1

L2FnL2Fn+3

=
L2Fn+3 + L2Fn

L2FnL2Fn+1L2Fn+2L2Fn+3

=
1

L2FnL2Fn+1L2Fn+2

+
1

L2Fn+1L2Fn+2L2Fn+3

.

Because

1

L2F2nL2F2n+3

=
1

L2F2nL2F2n+1L2F2n+2

+
1

L2F2n+1L2F2n+2L2F2n+3

,

we find that

∞∑
n=0

1

L2F2nL2F2n+3

=

∞∑
n=0

(
1

L2F2nL2F2n+1L2F2n+2

+
1

L2F2n+1L2F2n+2L2F2n+3

)
=

(
1

L2F0L2F1L2F2

+
1

L2F1L2F2L2F3

)
+

(
1

L2F2L2F3L2F4

+
1

L2F3L2F4L2F5

)
+ · · ·

=
∞∑
n=0

1

L2FnL2Fn+1L2Fn+2

.

This proves (i). Now we prove (ii). Note that it may be written as

∞∑
n=0

(
2

L2
Fn

LFn+1LFn+2LFn+3

− 1

L2
Fn

L2
Fn+3

)
=

1

4
.

Because

2LFn+3 − LFn+1LFn+2 = 5FFn+1FFn+2 ,

we have

∞∑
n=0

(
2

L2
Fn

LFn+1LFn+2LFn+3

− 1

L2
Fn

L2
Fn+3

)
=

∞∑
n=0

2LFn+3 − LFn+1LFn+2

L2
Fn

LFn+1LFn+2L
2
Fn+3

=

∞∑
n=0

5FFn+1FFn+2

L2
Fn

LFn+1LFn+2L
2
Fn+3

.

Using the identity

L2
m+n − L2

m−n = 5F2mF2n,

we find that

L2
Fn+3

− L2
Fn

= 5F2Fn+1F2Fn+2 = 5FFn+1LFn+1FFn+2LFn+2 .
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Finally, we get

∞∑
n=0

(
2

L2
Fn

LFn+1LFn+2LFn+3

− 1

L2
Fn

L2
Fn+3

)

=
∞∑
n=0

5FFn+1FFn+2

L2
Fn+3

− L2
Fn

(
1

L2
Fn

LFn+1LFn+2

− 1

LFn+1LFn+2L
2
Fn+3

)

=
∞∑
n=0

1

LFn+1LFn+2

(
1

L2
Fn

LFn+1LFn+2

− 1

LFn+1LFn+2L
2
Fn+3

)

=

∞∑
n=0

(
1

L2
Fn

L2
Fn+1

L2
Fn+2

− 1

L2
Fn+1

L2
Fn+2

L2
Fn+3

)

=
1

L2
F0
L2
F1
L2
F2

=
1

4
.

This completes the proof.

Also solved by Dmitry Fleischman, Ángel Plaza, and the proposer.

H-898 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, Romania, and Neculai
Stanciu, Buzău, Romania
(Vol. 60, No. 2, May 2022)

Compute

lim
n→∞

(
n
√
n!)2

(
n
√
n!Ln

n2
−

n+1
√
(n+ 1)!Fn+1

(n+ 1)2

)
.

Solution by Albert Stadler, Herrliberg, Switzerland

We will prove that the limit equals α1+ln
√
5

e3
.

We use Stirling’s asymptotic formula for factorials in the form

n! =
√
2πnnne−n+O( 1

n), n → ∞.

Hence,

n
√
n! =

n

e
+

1

2e
ln (2πn) +O

(
ln2n

n

)
and (

n
√
n!
)2

=
1

e2
n2 +

1

e2
ln (2πn) n+O

(
ln2n

)
.

Furthermore,

n
√

Ln = α

(
1 +

(
− 1

α2

)n) 1
n

= α+O

(
1

nα2n

)
,

n
√

Fn =
1

2n
√
5
α

(
1−

(
− 1

α2

)n) 1
n

= α

(
1− ln5

2n

)
+O

(
1

n2

)
.
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We collect results and find that

(
n
√
n!)2

( n
√
n!Ln

n2
−

n+1
√
(n+ 1)!Fn+1

(n+ 1)2

)
=
( 1

e2
n2 +

1

e2
ln (2πn) n+O

(
ln2n

))(( 1

en
+

1

2en2
ln (2πn) +O

( ln2n
n3

))(
α+O

( 1

na2n

))
−
( 1

e (n+ 1)
+

1

2e(n+ 1)2
ln (2π (n+ 1)) +O

( ln2n
n3

))(
α− αln5

2n
+O

( 1

n2

)))
=
( 1

e2
n2 +O

(
nlnn

))( α

en (n+ 1)
+

αln5

2en (n+ 1)
+O

( ln2n
n3

))
→ α

1 + ln
√
5

e3
,

as n tends to infinity.

Also solved by Michel Bataille, Brian Bradie, Dmitry Fleischman, Ángel Plaza,
Raphael Schumacher, David Terr, Andrés Ventas, and the proposers.

H-899 Proposed by Robert Frontczak, Stuttgart, Germany
(Vol. 60, No. 2, May 2022)

Show that

∞∑
n=1

sinh−1

(
1

5FnFn+1
(Ln+1

√
2L2n − Ln

√
2L2n+2)

)
=

1

2
ln

(
(3 + 2

√
2)(7− 2

√
6)

5

)
.

Solution by Brian Bradie, Newport News, VA

Using the identity L2n = 1
2(5F

2
n + L2

n), it follows that

1

5FnFn+1
(Ln+1

√
2L2n − Ln

√
2L2n+2)

=
Ln+1√
5Fn+1

·

√
5F 2

n + L2
n

5F 2
n

− Ln√
5Fn

·

√
5F 2

n+1 + L2
n+1

5F 2
n+1

=
Ln+1√
5Fn+1

·

√
1 +

(
Ln√
5Fn

)2

− Ln√
5Fn

·

√
1 +

(
Ln+1√
5Fn+1

)2

.

Therefore,

sinh−1

(
1

5FnFn+1
(Ln+1

√
2L2n − Ln

√
2L2n+2)

)
= sinh−1

(
Ln+1√
5Fn+1

)
− sinh−1

(
Ln√
5Fn

)
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and the desired sum telescopes. In particular,

∞∑
n=1

sinh−1

(
1

5FnFn+1
(Ln+1

√
2L2n − Ln

√
2L2n+2)

)
= lim

n→∞
sinh−1

(
Ln+1√
5Fn+1

)
− sinh−1

(
1√
5

)
= sinh−1(1)− sinh−1

(
1√
5

)
= ln(1 +

√
2)− ln

(
1 +

√
6√

5

)

= ln

(√
5(1 +

√
2)

1 +
√
6

)
= ln

(
(1 +

√
2)(

√
6− 1)√

5

)

=
1

2
ln

(
(1 +

√
2)2(

√
6− 1)2

5

)
=

1

2
ln

(
(3 + 2

√
2)(7− 2

√
6)

5

)
.

Also solved by Dmitry Fleischman, Ángel Plaza, Albert Stadler, Séan M. Stewart,
David Terr, and the proposer.

H-900 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 60, No. 2, May 2022)

Let i =
√

−1. For any odd integer m ≥ 1, prove that

∞∑
n=0

1

Lm(2n+1) + L2mi
=

2

5FmF2m
− i√

5F2m

.

Solution by Ángel Plaza, Gran Canaria, Spain

Because the proposed series is absolutely convergent and

1

Lm(2n+1) + L2mi
=

Lm(2n+1) − L2mi

L2
m(2n+1) + L2

2m

,

it is enough to prove that

∞∑
n=0

Lm(2n+1)

L2
m(2n+1) + L2

2m

=
2

5FmF2m
, and

∞∑
n=0

L2m

L2
m(2n+1) + L2

2m

=
1√
5F2m

.

Because m ≥ 1 is odd, L2
m(2n+1) = L2m(2n+1) − 2, and L2

2m = L4m + 2, and the expressions to

prove become

∞∑
n=0

Lm(2n+1)

L2m(2n+1) + L4m
=

2

5FmF2m
, and

∞∑
n=0

L2m

L2m(2n+1) + L4m
=

1√
5F2m

.

Note that FmF2m =
L3m + Lm

5
, so the first sum to be proved may be written as

∞∑
n=0

Lm(2n+1)(L3m + Lm)

L2m(2n+1) + L4m
= 2,
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and because m is odd, Lm(2n+1)(L3m + Lm) = L2m(n+2) − L2m(n−1) + L2m(n+1) − L2mn. If we

rename α2m = a, and β2m = b, the first sum becomes
∞∑
n=0

an+2 + bn+2 + an+1 + bn+1 − an−1 − bn−1 − an − bn

a2n+1 + b2n+1 + a2 + b2
= 2.

Note that

an+2 + bn+2 + an+1 + bn+1 − an−1 − bn−1 − an − bn

a2n+1 + b2n+1 + a2 + b2

=
a3n+3 + an−1 + a3n+2 + an − a3n − an+2 − a3n+1 − an+1

a4n+2 + a2n+3 + a2n−1 + 1

= (a+ 1)

(
an

a2n + a
− an+1

a2n+3 + 1

)
.

Therefore, the sum equals
∞∑
n=0

an+2 + bn+2 + an+1 + bn+1 − an−1 − bn−1 − an − bn

a2n+1 + b2n+1 + a2 + b2

= (a+ 1)

∞∑
n=0

(
an

a2n + a
− an+1

a2n+3 + 1

)
= (a+ 1)

(
1

a+ 1
+

a

a2 + a

)
= 2.

Analogously, the second sum may be written as
∞∑
n=0

a+ b

a2n+1 + b2n+1 + a2 + b2
=

1

a− b
,

or equivalently,
∞∑
n=0

a2 − b2

a2n+1 + b2n+1 + a2 + b2
= 1.

This is true because
∞∑
n=0

a2 − b2

a2n+1 + b2n+1 + a2 + b2
=

∞∑
n=0

a2n+3 − a2n−1

a4n+2 + a2n+3 + a2n−1 + 1

=

∞∑
n=0

(
a

a2n + a
− 1

a2n+3 + 1

)
(which telescopes)

=
a

1 + a
+

a

a2 + a
= 1.

Also solved by Brian Bradie, Dmitry Fleischman, Won Kyun Jeong, Albert
Stadler, and the proposer.
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