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PROBLEMS PROPOSED IN THIS ISSUE

H-693 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Given a positive integer m prove that the following sequence converges{

n∑
k=1

m
√

Fk −
m∑
i=1

m
√

Fn+m+i

}
n≥1

.

H-694 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Prove that the inequality

F2n−1F2n+1

2
≤

(
n∏

k=1

F2k

F2k−1

)4

≤ F2n−1F2n+2

3
.

holds for all n ≥ 1.

H-695 Proposed by Emeric Deutsch, Polytechnic Institute of NYU,
Brooklyn, NY

An ordered tree is a rooted tree in which the children of each node form a sequence rather
than a tree. The height of an ordered tree is the number of edges on a path of maximum length
starting at the root. An ordered tree is said to be symmetric if it coincides with its reflection
in a vertical line passing through the root. Find the number of symmetric ordered trees with
n edges and having height at most 3.

H-696 Proposed by Sergio Falcón and Ángel Plaza, Gran Canaria, Spain
For any positive integer k, the k-Fibonacci sequence, say {Fk,n}n≥0 is defined recurrently

by Fk,n+1 = kFk,n + Fk,n−1 for n ≥ 1, with initial conditions Fk,0 = 0; Fk,1 = 1. For n ≥ 0,
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and i ≥ j define Si,j =

j−1∑
r=0

kFk,i−rFk,j−r. Prove by combinatorial arguments that

Si,j =

{
Fk,iFk,j+1 if j is odd,
Fk,iFk,j+1 − Fk,i−j if j is even.

SOLUTIONS

A Trigonometric Sum

H-677 Proposed by N. Gauthier, Kingston, ON
(Vol. 46, No. 4, November 2008)

Let N ≥ 3 be an integer and define Q = ⌊(N − 1)/2⌋. Find a closed form expression for the
following sum

S(N) =

Q∑
k=1

k sin((2k + 1)π/N)

sin2(kπ/N) sin2((k + 1)π/N)
.

Solution by the proposer

For positive integers k and q with 1 ≤ k ≤ q and for 0 < (q+1)θ < π, with θ a real variable,
consider the following two identities:

sin θ

sin kθ sin(k + 1)θ
= cot kθ − cot(k + 1)θ, (1)

sin(2k + 1)θ

sin kθ sin(k + 1)θ
= cot kθ + cot(k + 1)θ. (2)

To prove these identities, we use the trigonometric identity for the sines of a sum of two angles
and transform the right hand sides as follows. For identity (1):

cot kθ − cot(k + 1)θ =
sin(k + 1)θ cos kθ − cos(k + 1)θ sin kθ

sin kθ sin(k + 1)θ
=

sin θ

sin kθ sin(k + 1)θ
.

For identity (2):

cot kθ + cot(k + 1)θ =
sin(k + 1)θ cos kθ + cos(k + 1)θ sin kθ

sin kθ sin(k + 1)θ
=

sin(2k + 1)θ

sin kθ sin(k + 1)θ
.

To achieve our goal, we first form the products of the identities (1) and (2), divide the resulting
equation by sin θ and then sum over k, with 1 ≤ k ≤ q, to get the following collapsing series:

S0(θ; q) =

q∑
k=1

sin(2k + 1)θ

sin2 kθ sin2(k + 1)θ
= csc θ

q∑
k=1

(cot2 kθ − cot2(k + 1)θ)

= csc θ(cot2 θ − cot2(q + 1)θ). (3)

Next consider a general sequence of numbers {wk}k≥1, and for a nonnegative integer m let
sm(q) =

∑q
k=1 k

mwk. We wish to determine sm(q) in terms of the previous sum sm−1(q),
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which is assumed known. To do so, form the set of q equations:

w1 + 2m−1w2 + 3m−1w3 + · · ·+ qm−1wq = sm−1(q),

2m−1w2 + 3m−1w3 + · · ·+ qm−1wq = sm−1(q)− sm−1(1),

3m−1w3 + · · ·+ qm−1wq = sm−1(q)− sm−1(2),

· · ·
qm−1wq = sm−1(q)− sm−1(q − 1).

Now sum the terms in the left-hand sides above, on the one hand, and those in the right-hand
sides above, on the other, to get, upon equating the results:

sm(q) = w1 + 2(2m−1)w2 + 3(3m−1)w3 + · · ·+ q(qm−1)wq

= qsm−1(q)−
q−1∑
k=1

sm−1(k)

= (q + 1)sm−1(q)−
q∑

k=1

sm−1(k).

We thus have the following summation formula:

sm(q) = (q + 1)sm−1(q)−
q∑

k=1

sm−1(k).

Since we know S0(θ; q) from (3), we apply this formula to the case m = 1 and

wk = wk(θ) =
sin(2k + 1)θ

sin2 kθ sin2(k + 1)θ
, k ≥ 1.

We then get that

S1(θ; q) =

q∑
k=1

k
sin(2k + 1)θ

sin2 kθ sin2(k + 1)θ
= (q + 1)S0(θ; q)−

q∑
k=1

S0(θ; k)

= csc θ

(
(q + 1)(cot2 θ − cot2(q + 1)θ)−

q∑
k=1

(cot2 θ − cot2(k + 1)θ)

)

= csc θ

(
cot2 θ − (q + 1) cot2(q + 1)θ +

q∑
k=1

cot2(k + 1)θ

)
.

Now note that
q∑

k=1

cot2(k + 1)θ = cot2(q + 1)− cot2 θ +

q∑
k=1

cot2 kθ.

As a consequence, we have that

S1(θ; q) = csc θ

(
−q cot2(q + 1)θ +

q∑
k=1

cot2 kθ

)
.

Let N ≥ 3 be an arbitrary integer, then set θ := π/N and prescribe q := q(N) so as to
maintain the convergence of cot2 ((q(N) + 1)π/N). Namely, we put q := Q, where Q was
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defined in the problem statement

Q =

{
(N − 1)/2 if N ≡ 1 (mod 2),
(N − 2)/2 if N ≡ 0 (mod 2).

We then have that 0 < (Q+ 1)π/N = (N + 1)π/(2N) < π for odd N , and 0 < (Q+ 1)π/N =
Nπ/(2N) < π for even N . The above sum then becomes

S1(N) = S1(π/N ;Q) = csc
( π

N

)(
−Q cot2

(Q+ 1)π

N
+

Q∑
k=1

cot2
kπ

N

)
.

The remaining task consists in finding the sum
∑N

k=1 cot
2 kπ/N , which is a known result that

is given in equation (30) of [1]:

Q∑
k=1

cot2
kπ

N
= C2(N)− C0(N).

Here, by equations (2), (24) and (25) of the same reference [1], and with a1,1 = 1/6 as given
by the first entry in the “Table of ar,m Coefficients” on page 271, we have that

C2(N) =

Q∑
k=1

csc2
kπ

N
=

1

6

{
N2 − 1 if N ≡ 1 (mod 2),
N2 − 4 if N ≡ 0 (mod 2),

and C0(N) =
∑Q

k=1 1 = Q. The desired sum is, consequently:

(i) For N odd, we have by replacing N with 2N + 1 and Q by N the formula

S1(2N + 1) = csc

(
π

2N + 1

)(
−N cot2

(
(N + 1)π

2N + 1

)
+

N(2N − 1)

3

)
.

(ii) For N even, we have by replacing N by 2N and with Q = N − 1 the formula

S1(2N) = csc
( π

2N

)(
−(N − 1) cot2

(
Nπ

2N

)
+

2N2

3
−N +

1

3

)
=

1

3
csc
( π

2N

)
(N−1)(2N−1).

This completes the solution to this problem.

[1] P. S. Bruckman and N. Gauthier, Sums of the even integral powers of the cosecant and
secant, The Fibonacci Quarterly, 44.3 (2006), 264–273.

Also solved by Paul S. Bruckman.

Counting Sums of Nonnegative Integers

H-678 Proposed by Mohammad K. Azarian, Evansville, IN
(Vol. 46, No. 4, November 2008)

(a) Show that there is a unique Fibonacci number F such that the inequalities

x1 + x2 + · · ·+ x70 < F and y1 + y2 + · · ·+ y18 < F

have the same number of positive integer solutions.
(b) Show that it is impossible to find three consecutive Fibonacci numbers Fk, Fk+1, Fk+2

such that the inequalities

x1 + x2 + · · ·+ xFk
< Fk+2 and y1 + y2 + · · ·+ yFk+1

< Fk+2

have the same number of positive integer solutions.
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Solution by the proposer

(a) Let r be a positive integer. It is well-known that the number of non-negative integer
solutions of the inequality

x1 + x2 + · · ·+ xn < r (4)

is

(
n+ r − 1

r − 1

)
. Therefore, the number of positive solutions of inequality (4) is the same as

the number of nonnegative integer solutions of the inequality

x1 + x2 + · · ·+ xn < r − n,

which is

(
r − 1

r − n− 1

)
. Thus, the number of positive integer solutions of inequalities from (a)

are

(
F − 1

F − 71

)
and

(
F − 1

F − 19

)
, respectively. Hence, for these two equations to have the same

number of solutions we must have(
F − 1

F − 71

)
=

(
F − 1

F − 19

)
. (5)

Next, from the fact that the binomial coefficients

(
n

m

)
are increasing for m ≤ ⌊n/2⌋ and then

decreasing, and

(
n

m

)
=

(
n

n−m

)
, we have that equation (5) holds only when (F −71)+(F −

19) = F − 1, whose solution is F = 89, which is a Fibonacci number.

(b) For the inequalities from (b) to have the same number of positive integer solutions the
condition is, by the preceding argument,(

Fk+2 − 1

Fk+2 − Fk+1 − 1

)
=

(
Fk+2 − 1

Fk+2 − Fk − 1

)
.

Since Fk+2 − Fk+1 = Fk, Fk+2 − Fk = Fk+1, we get the equation(
Fk+2 − 1

Fk − 1

)
=

(
Fk+2 − 1

Fk+1 − 1

)
.

Since (Fk+1 − 1) + Fk = Fk+2 − 1, it follows that the right hand side above is the same as(
Fk+2 − 1

Fk

)
. Hence, we get (

Fk+2 − 1

Fk − 1

)
=

(
Fk+2 − 1

Fk

)
. (6)

Since Fk−1 and Fk are consecutive, the above equation is a particular instance of the equation(
a

b− 1

)
=

(
a

b

)
in positive integers b ≤ a, which is possible only when a = 1, or 2b − 1 = a.

The first condition gives Fk+2− 1 = 1, or Fk+2 = 2, so k = 1, while the second condition gives
2Fk−1 = Fk+2−1, or Fk+2 = 2Fk, or Fk+1+Fk = 2Fk, or Fk+1 = Fk, which is again possible
only for k = 1. This proves (b) for any k > 1.

Also solved by Paul S Bruckman.
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Upper Bounds For Nested Radical Sums

H-679 Proposed by N. Gauthier, Kingston, ON
(Vol. 46, No. 4, November 2008)

For integers a ≥ 1 and n ≥ 0 consider the generalized Fibonacci sequence {fn}n given by

f0 = 0, f1 = 1 and fn+2 = afn+1 + fn for n ≥ 0. Let ∆ =
√
a2 + 4 and α = (a +∆)/2, β =

(a−∆)/2 be the roots of the characteristic equation of the recurrence. Consider the sequence
{Sn}n≥4 of nested radical sums

An =

√
f4 +

√
f5 + · · ·+

√
fn.

Prove that

Sn <
α6+p(n)

∆1+q(n)
,

where p(n) and q(n) are to be determined, and find an upper bound for the limit S =
limn→∞ Sn.

Solution by the proposer

We give five simple lemmas to facilitate presenting the solution.

Lemma 1. For positive real numbers {2 < a1 < a2 < · · · < an} with n ≥ 2, we have that
Qn = a1a2 · · · an − (a1 + · · ·+ an) > 0.

Proof. We first prove the lemma for two elements and then for n ≥ 3 elements. For two
elements a1 and a2, consider Q2/(a1a2) and immediately get that

Q2

a1a2
= 1−

(
1

a1
+

1

a2

)
> 0,

because 1/a1 < 1/2 and 1/a2 < 1/2, so that 1/a1 + 1/a2 < 1. Hence, Q2 > 0 and the lemma
holds for two elements. Now for n ≥ 3, consider Qn/(a1 · · · an), which gives

Qn

a1a2 · · · an
= 1−

(
1

a2a3 · · · an
+

1

a1a3 · · · an
+ · · ·+ 1

a1a2 · · · an−1

)
> 0,

since
1

a2a3 · · · an
+

1

a1a3 · · · an
+ · · ·+ 1

a1a2 · · · an−1
<

n

2n−1
< 1.

Then a1a2 · · · an − (a1 + · · ·+ an) > 0 for all n ≥ 2, which proves the lemma. �

Lemma 2. For n ≥ 1, fn < aαn/∆+ 1/2.

Proof. We use the Binet formula with αβ = −1, ∆ > 2, α > 1 and write that

fn − aαn

∆
=

αn − βn

∆
− aαn

∆
=

(1− a)αn

∆
+

(−1)n+1

∆αn
<

1

2
,

since (1− a) ≤ 0 and ∆αn > 2. �

Lemma 3. For n ≥ 2, we have fn < αn+1/∆.
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Proof. For n ≥ 2, observe that αn+1 = aαn + αn−1, which follows from the characteristic
equation for the root α, namely α2 = aα+1. Now divide the above relation by ∆ to get, with
αn−2 ≥ 1 and with Lemma 2, that

αn+1

∆
=

aαn

∆
+
( α
∆

)
αn−2 =

aαn

∆
+

(
a

2∆
+

1

2

)
αn−2 >

aαn

∆
+

1

2
> fn.

Lemma 3 is therefore proved for all n ≥ 2. �

Lemma 4. For n ≥ 4, we have

1

2

n−4∑
k=0

1

2k
= 1− 1

2n−3
.

Proof. This follows from the formula for the geometric series in x:

n−4∑
k=0

xk =
1− xn−3

1− x
for all x ̸= 1. (7)

Evaluating the result at x = 1/2 and dividing through by 2 then gives

1

2

n−4∑
k=0

1

2k
=

1

2

(
1− (1/2)n−3

1− 1/2

)
= 1− 1

2n−3
.

�

Lemma 5. For n ≥ 4, we have

24
n+1∑
k=5

1

2k
= 6− n+ 3

2n−3
.

Proof. This follows by differentiation from the formula

n+1∑
k=5

xk =
x5 − xn+2

1− x
for all x ̸= 1. (8)

Applying x
d

dx
to equation (8), we get

n+1∑
k=5

kxk = x
d

dx

(
x5 − xn+2

1− x

)
=

5x5 − (n+ 2)xn+3

(1− x)
+

x6 − xn+3

(1− x)2
.

Evaluating this last formula at x = 1/2 and multiplying through by 24 gives

24
n+1∑
k=5

k

2k
= 24

(
2

(
5

25
− n+ 2

2n+2

)
+ 22

(
1

26
− 1

2n+3

))
= 6− n+ 3

2n−3
.

�

Now we turn to the problem at hand. Consider the nested radical sum given in the problem
statement. For n ≥ 5, we have that

√
fn ≥

√
5 > 2, fn−1 > 2 and so by Lemma 1 we have that
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fn−1 +
√
fn < fn−1

√
fn. Hence, by repeating this process we replace all the nested radical

sums by nested radical products, thus:

Sn =

√√√√
f4 +

√
f5 +

√
f6 +

√
f7 + · · ·+

√
fn <

√√√√
f4

√
f5

√
f6

√
f7 · · ·

√
fn.

Furthermore, by invoking Lemma 3, we have that

Sn <

√√√√
f4

√
f5

√
f6

√
f7 · · ·

√
fn <

√√√√√√α5

∆

√√√√√α6

∆

√√√√α7

∆

√
α8

∆
· · ·
√

αn+1

∆
=

αb(n)

∆c(n)
,

where by Lemmas 4 and 5,

b(n) =

n+1∑
k=5

k

2k−4
= 24

n∑
k=5

k

2k
= 6− n+ 3

2n−3
,

and

c(n) =

n−4∑
k=0

1

2k+1
=

1

2

n∑
k=0

1

2k
= 1− 1

2n−3
.

Accordingly, p(n) = −(n+3)/2n−3, q(n) = −1/2n−3, and S = limSn < α6/∆, which completes
the solution to this problem.

Also solved by Paul S. Bruckman.
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