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PROBLEMS PROPOSED IN THIS ISSUE

H-813 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania

If xk > 0 for k = 1, . . . , n and m ≥ 0 is an integer, prove that
(

n
∑

k=1

1

xk

)

∑

cyclic

x1x2x3
Lmx2x3 + Lm+1x3x1 + Lm+2x1x2

≥ n2

2Lm+2

and that the same inequality holds with the Lucas numbers replaced by the Fibonacci numbers.

H-814 Proposed by Ray Melham, Sydney, Australia
Define the Tribonacci numbers, for all integers n, by Tn = Tn−1 + Tn−2 + Tn−3, with

T−1 = 0, T0 = 0, and T1 = 1. If k and n are integers, prove that

−T2kT
2
n−2 − T2k−2T

2
n−1 − 2T2k−1T

2
n + 2(T2k + T2k+1)T

2
n+1 + (T2k + 2T2k+1)T

2
n+2

+ T2k+2T
2
n+3 = 2T2n+2k+4.

H-815 Proposed by Mehtaab Sawhney, Commack, NY
Let p be a prime congruent to 1 modulo 4. Prove that

p−1
∑

n=0

2n
(

3n

n

)

≡ 0 (mod p).

374 VOLUME 55, NUMBER 4



ADVANCED PROBLEMS AND SOLUTIONS

H-816 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania

Prove that for a positive integer n

F1

(F 2
1 + F 2

2 )
2
+

F2

(F 2
1 + F 2

2 + F 2
3 )

2
+ · · ·+ Fn

(F 2
1 + F 2

2 + · · ·+ F 2
n+1)

2
≥ 1

Fn+2
− 1

F 2
n+2

.

SOLUTIONS

An identity with Fibonomial coefficients

H-779 Proposed by Hideyuki Ohtsuka, Saitama, Japan (Vol. 53, No. 4, November
2015)

Let
(n
k

)

F
denote the Fibonomial coefficient. For integers n ≥ 1 and r 6= 0 with n + r 6= 0,

prove that
n
∑

k=0

(−1)k(k+1)/2Fk+r

(

Fr

Fn+r

)k (n

k

)

F

= 0.

Solution by the proposer

It is known that
n
∑

k=0

(−1)k(k+1)/2

(

n

k

)

F

xk =

n−1
∏

k=0

(1− αn−k−1βkx) (1)

(see [1]). Let c = Fr/Fn+r. We have
n
∑

k=0

(−1)k(k+1)/2Fk+rc
k

(

n

k

)

F

=

n
∑

k=0

(−1)k(k+1)/2α
r(cα)k − βr(cβ)k√

5

(

n

k

)

F

=
αr

√
5

n−1
∏

k=0

(1− cαn−kβk)− βr

√
5

n−1
∏

k=0

(1− cαn−k−1βk+1) (by (1))

=
αr

√
5

n−1
∏

k=0

(1− cαn−kβk)− βr

√
5

n
∏

k=1

(1− cαn−kβk)

=
1√
5
(αr(1 − cαn)− βr(1− cβn))P (n),

where P (1) = 1 and P (n) =
∏n−1

k=1(1− cαn−kβk) for n ≥ 2.
Here, we have

αr(1− cαn)− βr(1− cβn) = αr − cαr+n − βr + cβr+n

=
√
5(Fr − cFn+r) =

√
5(Fr − Fr) = 0.

Therefore, we obtain the desired identity.

Note: In the same manner, for integers n ≥ 1 and r, we have
n
∑

k=0

(−1)k(k+1)/2Lk+r

(

Lr

Ln+r

)k (n

k

)

F

= 0.

[1] L. Carlitz, The characteristic polynomial of a certain matrix of binomial coefficients, The
Fibonacci Quarterly, 3.2 (1965), 81–89.
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A closed form for a certain sum

H-780 Proposed by Hideyuki Ohtsuka, Saitama, Japan (Vol. 53, No. 4, November
2015)

Given real numbers r and t > 0 and an integer n ≥ 0, find a closed form expression for the
sum:

n
∑

k=0

1

fk(L
r
2k

+ t)(Lr
2k+1 + t) · · · (Lr

2n + t)
,

where f0 = t/(t+ 1) and fk = F r
2k+1 for k ≥ 1.

Solution by the proposer

We find the identity
n
∑

k=0

1

fk(L
r
2k

+ t)(Lr
2k+1 + t) · · · (Lr

2n + t)
=

1

tF r
2n+1

. (2)

The proof of (2) is by mathematical induction on n. For n = 0, both sides are equal to 1/t.
Assume that (2) holds for n. For n+ 1, we have

n+1
∑

k=0

1

fk(L
r
2k

+ t)(Lr
2k+1 + t) · · · (Lr

2n+1 + t)

=
1

fn+1(Lr
2n+1 + t)

+
1

(Lr
2n+1 + t)

n
∑

k=0

1

fk(L
r
2k

+ t)(Lr
2k+1 + t) · · · (Lr

2n + t)

=
1

F r
2n+2(L

r
2n+1 + t)

+
1

(Lr
2n+1 + t)

× 1

tF r
2n+1

=
F r
2n+2 + tF r

2n+1

tF r
2n+1F

r
2n+2(L

r
2n+1 + t)

=
F r
2n+1(L

r
2n+1 + t)

tF r
2n+1F

r
2n+2(L

r
2n+1 + t)

=
1

tF r
2n+2

.

Thus, (2) holds for n+ 1.

Also solved by Dmitry Fleischman.

More closed form expressions

H-781 Proposed by Hideyuki Ohtsuka, Saitama, Japan (Vol. 53, No. 4, November
2015)

Find a closed form expression for the sums:

(i)

n
∑

k=1

(L2k ±
√
5)(L2k+1 ±

√
5) · · · (L2n ±

√
5) for n ≥ 1;

(ii)

n
∑

k=m+1

(L2k ± L2m)(L2k+1 ± L2m) · · · (L2n ± L2m) for n > m ≥ 1.

Solution by the proposer

We use the identity
L2
m = L2m + 2(−1)m (see [1](17c)). (3)

For n ≥ 1, we have

x2 + x− 2 + (L2n − x)(L2n + x) = L2
2n + x− 2 = L2n+1 + x (by (3)).
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If an = L2n − x, bn = L2n + x, and c = x2 + x− 2, then we have bn+1 = c+ anbn. Using this
identity repeatedly for n ≥ m+ 2 ≥ 2, we have

bn+1 = c+ anbn = c+ an(c+ an−1bn−1) = · · ·
= c+ an(c+ an−1(c+ an−2(c+ · · · am+2(c+ am+1bm+1) · · · )))

= c+
n
∑

k=m+2

c
n
∏

j=k

aj + bm+1

n
∏

j=m+1

aj.

Therefore, we obtain

(x2 + x− 2)

n
∑

k=m+2

n
∏

j=k

(L2j − x) + (L2m+1 + x)

n
∏

j=m+1

(L2j − x) = L2n+1 − x2 + 2. (4)

(i) If m = 0 and x = ∓
√
5 in (4), for n ≥ 2, we have

(3∓
√
5)

n
∑

k=2

n
∏

j=k

(L2j ±
√
5) + (3∓

√
5)

n
∏

j=1

(L2j ±
√
5) = L2n+1 − 3.

Therefore, we obtain
n
∑

k=1

n
∏

j=k

(L2j ±
√
5) =

L2n+1 − 3

3∓
√
5

.

This identity holds also for n = 1, since then,

RHS =
L4 − 3

3∓
√
5
= 3±

√
5 = L2 ±

√
5 = LHS.

(ii) If m ≥ 1 and x = ∓L2m in (4), for n ≥ m+ 2, we have

(L2
2m ∓ L2m − 2)

n
∑

k=m+2

n
∏

j=k

(L2j ± L2m) + (L2m+1 ∓ L2m)

n
∏

j=m+1

(L2j ± L2m)

= L2n+1 − L2
2m + 2.

Using (3), we have

(L2m+1 ∓ L2m)
n
∑

k=m+1

n
∏

j=k

(L2j ± L2m) = L2n+1 − L2m+1 .

Therefore, we obtain
n
∑

k=m+1

n
∏

j=k

(L2j ± L2m) =
L2n+1 − L2m+1

L2m+1 ∓ L2m
.

The identity holds for n = m+ 1 as well, since then,

RHS =
L2m+2 − L2m+1

L2m+1 ∓ L2m
=

L2
2m+1 − L2

2m

L2m+1 ∓ L2m+1

= L2m+1 ± L2m = RHS,

where in the above chain of equalities we used (3).

[1] S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Dover, 2008.

And yet more closed form formulas
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H-782 Proposed by Hideyuki Ohtsuka, Saitama, Japan (Vol. 54, No. 1, February
2016)

Given positive integers r and s, find formulas for the sums

(i)
∞
∑

n=1

(−1)srn

α(s−1)rnFrnFr(n+1)Fr(n+2) · · ·Fr(n+s)

;

(ii)

∞
∑

n=1

(−1)srn

α(s−1)rnLrnLr(n+1)Lr(n+2) · · ·Lr(n+s)

.

Solution by the proposer

(i) We have

βsrn

FrnFr(n+1) · · ·Fr(n+s−1)
− βsr(n+1)

Fr(n+1)Fr(n+2) · · ·Fr(n+s)
=

βsrn(Fr(n+s) − βsrFrn)

FrnFr(n+1) · · ·Fr(n+s)

=
(−α−1)srn(αr(n+s) − βr(n+s) − βsr(αrn − βrn))√

5FrnFr(n+1) · · ·Fr(n+s)

=
(−1)srnαrn(αsr − βsr)√

5αsrnFrnFr(n+1) · · ·Fr(n+s)

=
(−1)srnFsr

α(s−1)rnFrnFr(n+1) · · ·Fr(n+s)

.

Using the above identity, we have

m
∑

n=1

(−1)srn

α(s−1)rn
∏n+s

i=n Fri

=
1

Fsr

m
∑

n=1

(

βsrn

∏n+s−1
i=n Fri

− βsr(n+1)

∏n+s
i=n+1 Fri

)

=
1

Fsr

(

βsr

∏s
i=1 Fri

− βsr(m+1)

∏m+s
i=m+1 Fri

)

.

Therefore, we obtain

∞
∑

n=1

(−1)srn

α(s−1)rnFrnFr(n+1)Fr(n+2) · · ·Fr(n+s)

=
βsr

Fsr(FrF2rF3r · · ·Fsr)
.

(ii) We have

βsrn

LrnLr(n+1) · · ·Lr(n+s−1)
− βsr(n+1)

Lr(n+1)Lr(n+2) · · ·Lr(n+s)
=

βsrn(Lr(n+s) − βsrLrn)

LrnLr(n+1) · · ·Lr(n+s)

=
(−α−1)srn(αr(n+s) + βr(n+s) − βsr(αrn + βrn)

LrnLr(n+1) · · ·Lr(n+s)
=

(−1)srnαrn(αsr − βsr)

αsrnLrnLr(n+1) · · ·Lr(n+s)

=
(−1)srn

√
5Fsr

α(s−1)rnLrnLr(n+1) · · ·Lr(n+s)

.

Using the above identity, we have

m
∑

n=1

(−1)srn

α(s−1)rn
∏n+s

i=n Lri

=
1√
5Fsr

m
∑

n=1

(

βsrn

∏n+s−1
i=n Lri

− βsr(n+1)

∏n+s
i=n+1 Lri

)

=
1√
5Fsr

(

βsr

∏s
i=1 Lri

− βsr(m+1)

∏m+s
i=m+1 Lri

)

.
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Therefore, we obtain
∞
∑

n=1

(−1)srn

α(s−1)rnLrnLr(n+1)Lr(n+2) · · ·Lr(n+s)

=
βsr

√
5Fsr(LrL2rL3r · · ·Lsr)

.

Example. If s = 4 and r = 1, then we have
∞
∑

n=1

1

α3nFnFn+1Fn+2Fn+3Fn+4
=

7− 3
√
5

36
;

∞
∑

n=1

1

α3nLnLn+1Ln+2Ln+3Ln+4
=

−15 + 7
√
5

2520
.

Also solved by Dmitry Fleischman.
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