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PROBLEMS PROPOSED IN THIS ISSUE

H-654 Proposed by Slavko Simic, Belgrade, Yugoslavia
Let z = {z;}", be a sequence of real numbers and p = {p;}}_; be a sequence of positive

k
numbers with . p; = 1. Define S = Efﬂp,:xf — (Zlep,-:c;) ,for k=1,2,3,... Prove

that S7 < 35,84. Is it true that the inequality S37,; < %525222;21 holds for all

H-655 Proposed by Slavko Simic, Belgrade, Yugoslavia
Let {¢;}™, be a finite sequence of distinct positive integers and ¢ > 1 be a natural

number. Prove that [%%%J = ¢, where ¢ = max{¢; : 1 = 1,...,b}. Is it true that
i=1

g-1) D 7 cig®
n
T

[ | -y

H-656 Proposed by Andrew Cusumano, Great Neck, NY

Let A, = >p_, k*. Show that lim; e (%ﬁ% — A_H_l) = e. Show that the same holds

for the sequence of general term A, = (n + 1)"+! — n™.

H-657 Proposed by Paul S. Bruckman, Sointula, Canada
Show that the equation (a + ba)* + (a+bB3)* = ¢* has no nonzero integer solutions a, b, c,

where a = (14 +/5)/2 and 8= (1 — v/5)/2.
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SOLUTIONS
A determinant with Fibonacci, Lucas and Pell numbers

H-636 Proposed by Charles K. Cook, Sumter, SC
(Vol. 44, No. 1, February 2006)
Evaluate the determinant of the matrix

F2412 P2 _R2 L,P,—F,R,) 2AF.P,+L,Ry)
HE R+ LoP) F2—-IL24+P2—R2 2(P,R,—F,L,)
2(L,R, — F,P.) 2F.,L.+P.,R,) F2:-L2-P:+R2

where F,,, L,,, P, and R, are the Fibonacci, Lucas, Pell and Pell-Lucas numbers, respectively.
Solution by the proposer
Letting M stand for the original matrix, we get, using an idea presented by B. Jansson [1]
in the solution of a more general problem proposed by C.W. Trigg [2], after some simplification
that
det(M)? = det(M)det(MT) = det(MMT)

(F2+ L2+ P2+ R2)? 0 0
= det 0 (F2+ L% + P2+ R2)? 0
0 0 (F2 + L2 + P2 + R2)?

= (F24 L2 + P2 + R2)S.

Thus, det(M) = +(F2+ L2+ P2+ R2)3. To decide on the sign, note that since det(M) is a sum
of signed products of binary recurrent sequences, it follows that det(M) is a linearly recurrent
sequence of n (of some large order) itself, and so is each of +(F2 + L2 + P2 + R2)3. 1t follows
from known facts about zeros of linearly recurrent sequences that in order to decide which sign
should we pick, it suffices to compute the given determinant in a particular value. Computing it
at n = 0, we get that the determinant is positive, so the formula det(M) = (F2+L2+P2+R2)?
holds for all n > 0.

[1] B. Jansson. ”Solution to Problem 750.” Mathematics Magazine 43.4 (1970):230.

[2] C.W. Trigg. ”Problem 730.” Mathematics Magazine 43.1 (1970):48.

Also solved by Kenneth B. Davenport and Paul S. Bruckman.
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A Fibonacci Triangle

H-637 Proposed by Ovidiu Furdui, Kalamazoo, MI
(Vol. 44, no. 1, February 2006)
Prove that

\/1 } B 1+ 1 E 1
e e = —————— ane -
AL 41 A2 9u/FE ik 2 o2 /F2 ,+1

are the sides of a triangle whose circumradius is 1/2 for all n > 0.
Solution by Paul S. Bruckman, Sointula, Canada
The formula

abe

for the circumradius of a triangle with sides a, b, ¢ can be found in many elementary geometry
texts, where K is the area of the triangle. By Heron’s formula,

K =+/s5(s —a)(s—b)(s—¢), wheres=(a+b+c)/2 (2)
Setting ? = 1/2 in (1) and using (2), we get that the required relation is equivalent to
a* + b + ¢ — 2(a®? + a?c® 4 b2c?) + 40P = 0. (3)

We take

1 F. 1 1 1 1i

2 2n 2 2

4 = ilila e (e |y [ TSRS Sl f e e e
2 ( (1‘2211 T 1)1/2) ’ 2 ( (1’ 2n+1 1)1/2) ¢ 2 ( (j 22n+2 1)1/2)

Thus,
2% —1=Fa(Fo, +1)72, 2 ~ 1 = (Fo, ., +1)7Y%, 2% — 1 = (F2,,, + 1)~ V2

Multiplying the above relations we get

-2

((2“2 o 1)(2b2 - 1)(2(,‘2 - 1)) (r2n 4 1)([2n+1 & ])( 2n+2 + 1)/
= (FPan41Fon—1)(Fon+3Fon—1) Font2Font1) Forl = (FantaFont1Fon_1/Fan)?.
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Since 2a% — 1, 2b% — 1, 2¢2 — 1 are positive, upon extracting square-roots we get

(202 = 1)(28* = 1)(2¢ = 1)) = Fans3Fant1F2n—1/Fon- (4)
However,
(2a% — 1)(2b% — 1)(2¢® — 1) = 8a%b%c? — 4(a®V® + a®c® + b%c?) + 2a® +0%+ %) - 1.
Comparing the last relation with (3), we see that we must prove the following:
(202 — 1)(2b® — 1)(2¢® — 1) = 2(a® + b° + ¢?) — 2(a* +b* +c*) — 1, (5)
which in light of (4) is equivalent to

F2n
FonysFani1Fan

2a? + b2+ %) — 20+ b  +cf) 1=

This is equivalent to

2F,
90t 1P 4 (B = 1P - [ 1) =1~ T : 6
( ) ( ) ( ) F2n+3F2n+1F2n—1 ( )
Now
F2 al 1
2% — 12 =— "2 (p? 1= — (2?1 = .
( ) Font1Fon ( ) Fony3lon_a ( ) Fonyslon_1
Thus,
2 F. Fy
(2&2 _ 1)2 3 (2b2 _ 1)2 4 (202 _ 1)2 = F2'n. 2n+3 = F2n+1 + Fap 1. (7)
FoniaFoni1Fon—1
Comparing (6) and (7), we see that it suffices to prove the following identity:
FontsFaoni1Fon_1 — 2Fon = F3 Fonts + Fong1 + Fon-1. (8)

Since Fapt1Fon_1 — 1 = F3,, identity (8) simplifies to Fan4s = 2Fan + Fant1 + Fan—1. This
last one is indeed an identity since 2Fan + Fans1 + Fon—1 = (Fan + Fant1) + (Fan + Fan—1) =
Fonyz + Fansi = Fanys, as wanted. This proves that indeed the given a, b and ¢ form a
triangle of circumradius radius 1/2.

Also solved by the proposer.
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An Inequality with Fibonacci Logarithms

H-638 Proposed by José Luis Diaz-Barrero, Barcelona, Spain
(Vol. 44, no. 1, February 2006)
Let n be a positive integer. Prove that

T
Fea
4+2 < F, + 3F, 0.

k2=:1 log(1 + Fy41/F) i i

Note: This problem has appeared also as B-1009. The proposer apologizes for the over-
sight and wishes to retract his proposal H-638. However, the editor has already received so-
lutions from Gokcen Alptekin, Paul S. Bruckman, G. C. Greubel, H.-J. Seiffert, Naim Tuglu,
and the proposer.

Identities with Fibonacci and Lucas Polynomials

H-639 Proposed by H.-J. Seiffert, Berlin, Germany
(Vol. 44, no. 2, May 2006)
The sequences of the Fibonacci and Lucas polynomials are defined by

Fo(z) =0, Fi(z) =1, and Fpyq(z) = zFa(z) + Fr-1(z) for n > 1,

Lgfe) =2, Li{z] = o, and Lo ey =ale)+ bpoa(E) form 2 1,

respectively. Prove that, for all non-zero complex numbers z and all positive integers n,
(a)

2n—1

Z (4'” —k]. — k) 241L-1-2kaFk(m) o $2n—¥L2n_l($)an(4/x),
k=0
(b)
2n—1
4n—1—k
Z ( n ) )24n_1_2kkak($) = $2n—1($2 +4)F271—1($)F2n(4/$),
k=0
(c)
8 Pl el
Z ( : )24n+22k$ka(x) — m2?L+1F2n($)L2n+l(4/x),
k=0
(d)

2n J :
Z (4” -| k] i k) 24u+2—72kkak(E) - $2n+1L2n(3")L2n+1(4/$)-

k=0
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Solution by the proposer
It is known that

Fn (z) = (a(z)" — B(z)™)/Vz2 + and  Ly(z) = a(z)" + B(z)", 6))
where a(z) = (z + v/z2 +4)/2 and B(z) = (z — V22 + 4)/2, and that

w _,Z(znmp ) 12k )

k=0

It suffices to prove the result when z > 0 is rational such that +/z2? + 4 is irrational. For such

z, we put y = 2,/—F(z)/z. Since z — B(z) = a(z), (1) gives

Fon(y) =

s (V@ +Va®) " - (VoA - Va) ).

so that, by

(V-B(=)+ \/a(a:))2 = /2% + 442 = za(4/z)
and

(V8@ - Va@) = va? +4-2= ~ap(4/a),

Fon(y) = 2\/—(0 4/z)" — (-B(4/z))").

On the other hand, from (2), we find

Fon(y) = i Z ( o 5 )22”_1_2k$ka(:::)k,

(:L‘Dl z))“

because —f(z) = 1/a(z). Combining both identities gives
n—1

2ﬂ, — 1 — k e l n n— k0
S (e ) ttate)t = atae) e/ - (<)),
k=0

The desired identities (a) and (b) follow by replacing n by 2n, using (1) and the relation
a(z)* = (Li(z) + V2 + 4Fy(x)) /2. Similarly, with n replaced by 2n+ 1, one gets (c) and (d).

Also solved by Paul S. Bruckman and Harris Kwong.
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