8. AN EXTENDED RESULT

Theorem 5. The series
\[A = \sum_{m=1}^{\infty} (-1)^{m+1} \tan^{-1} \frac{1}{F_{2m}} \]
converges and \(A = \tan^{-1} \left(\frac{\sqrt{5} - 1}{2} \right) \).

Proof: Since the series is an alternating series, and, since \(\tan^{-1} x \) is a continuous increasing function, then
\[\tan^{-1} \frac{1}{F_{2n}} > \tan^{-1} \frac{1}{F_{2n+2}} \quad \text{and} \quad \tan^{-1} 0 = 0. \]

The angle \(A \) must lie between the partial sums \(S_N \) and \(S_{N+1} \) for every \(N > 2 \) by the error bound in the alternating series, but \(S_N = \tan^{-1} \left(\frac{F_N}{F_{N+1}} \right) \). Thus the angles of \(U_N \) and \(U_{N+1} \) lie on opposite sides of \(A \). By the continuity of \(\tan^{-1} x \) then
\[\lim_{n \to \infty} \tan^{-1} \left(\frac{F_n}{F_{n+1}} \right) = A = \tan^{-1} \left(\frac{\sqrt{5} - 1}{2} \right). \]

Comment: The same result can be obtained simply from
\[\tan \left(\tan^{-1} \frac{F_n}{F_{n+1}} - \frac{\sqrt{5} - 1}{2} \right) = (-1)^{n+1} \left(\frac{\sqrt{5} - 1}{2} \right)^{2n+1} \]
Which slope gives a better numerical approximation to \(\frac{\sqrt{5} - 1}{2} \), \(F_n/F_{n+1} \) or \(L_n/L_{n+1} \)? Hmmm?

REFERENCES FROM PAGE 60