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1. INTRODUCTION 

We define the Fibonacci and Lucas n u m b e r s a s usual by means of 

F 0 = 0, Fi = 1, F ^ = F + F - (n > 1) , 
" ' i » n+1 n n - 1 ' 

L0 = 2, Lt = 1, L . = L + L , (n > 1) . 
u x n+1 n n - 1 ' 

We reca l l that every posi t ive in teger N can be wri t ten uniquely in the form 

(1.1) N = F. + F. + . . . + F t 
H &2 K r 

where 

(1.2) k - k j + 1 > 2 (j = 1, 2, • . . , n - 1); k r > 2 . 

If A, denotes the se t of posit ive in tegers {N} for which k = k, it i s 

c l e a r that the se t s 

(1.3) | A j (k = 2, 3, 4, • - . ) 

consti tute a par t i t ion of the set of posit ive in tegers . We may re fe r to (1.3) 

a s a Fibonacci par t i t ion of the posit ive in t ege r s . It i s proved in [2 ] that the 

n u m b e r s in A, can be descr ibed in t e r m s of the g r ea t e s t in teger function. 

More p rec i se ly , if 

a = I (1 + N / 5 ) 
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and we put 

(1.4) a(n) = [ a n ] , . b(n) = [a2n] , 

then we have 

(1.5) A 2 t = { a b ^ a d i ) | n = 1, 2, 3 , • • •} (t = 1, 2, 3 , • • •) , 

(1.6) A 2 t + 1 = {bfca(n) | n = 1, 2, 3 , -- » } (t = 1, 2, 3 , • • •) . 

As i s cus tomary , powers and juxtaposit ion of functions should be in te rpre ted 

a s composit ion. 

Turning next to r ep resen ta t ions a s sums of Lucas n u m b e r s , we show 

f i r s t that every posit ive in teger i s uniquely r ep re sen t ab l e . e i t he r in the form 

(1.7) N = L k j + . . - + L k r + L 0 , 

where 

(1.8) k ' = k j + 1 > 2 (j = 1, 2, • • - , r - 1); k r => 3 

o r In the form 

(1.9) N = L k j + . . • + L k r , 

where now 

(1.10) k - k j + 1 => 2 (j = 1, 2, ••• , r - 1); k f > 1 ; 

but not in both (1.7) and (1.9). 

Le t B0 denote the se t of posit ive in tege r s r ep resen tab le in the form 

(1.7) and le t B, denote the se t of posit ive In tegers r ep resen tab le in the form 

(1.9) with k = k. Then a s above the se t s r 

(1.11) B k fe = 0 , 1 , 2 , . . . ) 
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const i tute a par t i t ion of the posit ive in tegers which may be cal led a Lucas 

par t i t ion. In the next sect ion we shall prove the following. 

(1.12) B0 = {a2(n) + n | n = 1, 2, 3, • • • } , 

(1.13) Bt = (a2(n) + n - 1 | n = 1, 2, 3, • • • } , 

and 

(1.14) B 2 t + 1 = { a b t " 1 a ( n ) + a b ^ t n ) | n = 1, 2, 3, • • •} (t = 1, 2, 3, • . . ) , 

(1.15) B 2 t = { b t _ 1 a ( n ) + b W ) | n = 1, 2, 3 , • • • } (t = 1, 2, 3, • • •) . 

It i s not difficult to show that an in teger N i s in B0 if and only if i t is 

not r ep resen tab le in the form 

(1.16) N = L ^ + . . . + L k r , 

where 

ki => k2 - . . . > k r > 1 . 

Let ^(n) denote the number of In tegers ^ n that a r e not r ep resen tab le in the 

form (1.17). Hoggatt has conjectured that 

(1.17) „ (L n ) = F Q _ 1 

and that, for fixed k? 

(1.18) ^(kLn) = k F n _ 1 , 

if n is sufficiently l a rge . The conjecture (1.17) was proved by Kla rne r ; we 

shall prove (1.18) in Section 3 below. 
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2. SOME PROPERTIES OF THE LUCAS REPRESENTATION 

Let P be the set of numbers that can be written in the form (1.7) with 
kt ^ n, and let Q be those that can be written in the form (1.9) with kt ^ 
n. Then we have 

P3 = { 2 , 6 } 

Q3 = {1, 3, 4, 5} 

P4 = {2, 6, 9} 

Q4 = {1, 3, 4, 5, 7, 8, 10} 

(2.1) 

By induction we obtain the following theorem. 
Theorem 1. Every positive integer can be uniquely represented in 

either the form (1.7) or the form (1.9), but not both. Moreover, 

(2.2) P U Q = {1, 2, ••• , L ^ - 1} 
n ^n L ' ' ' n+1 J 

(2.3) card (P ) = F 
n ' n 

(2.4) card ( Q J = FR+2 - 1 . 

Proof. We will prove (2.2) —(2.4) and also 

(2.5) P n n Qn = 0 

by induction. Hence let us assume (2.2)-(2.5) up to and including the value 
n. Now by definition 

P n + 1 = P n U ^n- l+W 

V l = Q n U ( Vl + . L n + l> U < W 

and these unions are disjoint; if for instance, N €E P - + L - , then N > 
L + 1 and by (2.2) N $ P , etc. Hence 
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card (P ) = card (P ) + card (P - ) '= F -n+1 n n-1 n+1 

and 

ca rd (Q n + 1 ) = F n + 2 - l + F n + 1 - l + l F n + 3 - 1 

The other properties are easily checked. 
The following tree may aid the reader. 

n n 

0 2 

1 1 

2 3 

3 4 

5 2 

Q4 

We turn next to the relations (1.12) —(1.15). We make use of the func-
tion e defined in [1], The properties we need are the following (see [1] and 
[2]): 

(i) If 

N = F + . . . + p k k & 2, kj > k2 > • • • > k , 
ki 

then 

e ( n ) = F k , - 1 + '°° + F ' k r - l 

(ii) For every N9 

e(a(N)) = N 
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and 

e(b(N)) = a(N) . 

Theo rem 2. The following re la t ions hold. 

(2.6) B0 = {a2(n) + n | n = 1, 2, 3 , • • • } 

(2.7) Bt = {a2(n) + n - 1 | n = 1, 2, 3 , • • • } 

(2.8) B 2 t = { b ^ a f e ) +b t a (n ) In = 1, 2, 3 , . . . } (t = 1, 2, 3, • • •) 

(2.9) B 2 t + 1 = { a b ^ a f c i ) + a b W ) | n = 1, 2, 3 , • • •} (t = 1, 2, 3, - • •) . 

Proof. Let N be an a r b i t r a r y posi t ive in teger . By (1.5), we have 
a2(N) E A2. Hence 

(2.10) a2(N) = F 2 + €4F4 + • - . , 

where €. may a s s u m e the values 0 o r 1. Applying e twice, we get 

(2.11) N = Ft + €4 F 2 + ••• . 

Adding (2.10) and (2.11), we get 

(2.12) a2(N) + N = 2 + €4 L 3 + • • • E B0 . 

On the o ther hand, suppose 

(2.13) M = L0 + €3 L 3 + €4 L 4 + . . . 

i s in BQ. Let 

K = F 2 + €3 F 4 + €4 F 5 + . . . . 
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Since K E A2, by (1.5) K mus t be of the form a2(M) for some M. Also 
M = e2(a2(M)). Hence 

a2(M) = F2 + €3 F 4 + e 4 F 5 + • - . 

M = F4 + €3 F 2 + 64 F 3 + • • • 

and 

N = M + a2(M) . 

This p roves (2.6). Equation (2.7) is c l e a r from the definition. To prove (2.8), 

le t N be a r b i t r a r y . Then 

bta(N) E A 2 t + 1 , 

by (1.6), so 

b W ) = F2 t + 1 + €2 t + 3 F 2 t + 3 + . . . . 

Applying e twice and adding we get 

bta(N) + b'^CN) = L 2 t + e 2 t + 2 L 2 t + 2 + " • G B 2 t . 

Conversely, suppose N £ B„. , so that 

Put 

N = L 2 t + €2 t + 2 L 2 t + 2 + 

M = F 2 t + 1 + €2 t + 2 F 2 t + 3 + 

t 
Then, by (1.6), M = b a(K) for some K. Moreover , s ince 

e2(M) = b t ' 1 a ( K ) , 
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we have , 
N = b a(K) + b a(K) . 

This proves (2.8), and the proof of (2.9) is similar. 

3. PROOF OF HOGGATT'S CONJECTURES 

Theorem 3. An integer N is in B0 if and only if it is not represent-
able in the form 

(3.1) N = L. + . . . + Li , 

where 

(3.2) Ji > j 2 > . . . => j s > 1 . 

Proof. If 

(3.3) j t - j t + 1 > 2 (t = 1, • • • , s - 1) , 

then Theorem 3 is an immediate consequence of Theorem 1. Let u be the 
least positive integer such that 

In (3.1), replace 

û Wl X 

L. + L. by L. J l 
i i i +1 
Ju Ju+1 Ju 

and then repeat the process. Since 

L l + L2 + . . . + L k = L k + 2 - 3, 

we ultimately reach a representation of the form (3.1) that satisfies (3.3). 
This evidently proves the theorem. 
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Let v(n) denote the number of posi t ive in tege r s N ^ n that a r e 

r ep re sen tab le in the form (3.1), so that by the theorem jus t proved, ^(n) 

a lso the number of in tege r s ^n in B0. 

T h e o r e m 4. We have 

(3.4) v(n) = 

Proof. By Theo rem 2, 

B0 = {aa(k) + k | k = 1, 2, 3 , • • • } 

= {b(k) + k - 1 | k = 1, 2, 3 , 8 B 0 } . 

Thus v(n) i s the l a r g e s t in teger k such that 

b(k) + k ^ n + 1 . 

Since b(k) = [ < A ] , v{n) i s the l a r g e s t k such that 

[(a2 + l )k ] < n + 1 , 

that i s 9 the l a r g e s t k such that 

(a2 + l )k <• n + 2 . 

Thus (3.4) follows at once. 
T h e o r e m 5. We have 

(3.5) v(LR) = F n _ x (n => 1) . 

Proof. Since 

L n = an + pn (ap = -1) , 

it follows that 

n + 2 
a2 + 1 
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L + 2 n , fln , 0 n - 1 nn nn+t 
n = a + p + 2 _ a - 2 / 3 - / 3 

a2 + 1 a2 + 1 a ~ P 

J1"1 - A 1 -2/3 + ^n-1 - /3 n + 1 

= F n-

a - p 

_ 1 a2 + 1 

a • 

• 

- P 

It i s eas i ly verif ied that 

2 + fi11"1 
0 < ± - + P < i (n > 1) 

G/2 + 1 

T h e o r e m 6, Le t k be a fixed posit ive integer* Then 

(3.6) ^(kL ) = kF -
n n - 1 

for n sufficiently l a rge . 

Proof. We have 

kL + 2 . t n , nn. , rt , , n - 1 ^n+1^ n = k(or + p ) + 2 = k(a - p ) - 2, 

a2 + 1 a2 + 1 or - j3 

- t ^ " 1 - A1
 + k^11"1 - / 3 n + 1 ) - 2/3 

a - p a - p 

F o r n sufficiently l a rge it i s c l e a r that 

, / /Dn-1 0 n + l x 0 0 
0 < k<^ - ft ) - 2/3 < 

or - p 

so that 
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"kL + 2' 
n 

a2 + 1 
= kF n - 1 

This comple tes the proof of the theorem,, 

T h e o r e m 7„ We have 

(3.7) 

and 

v(5F ) = L -
n ' n - 1 

(n => 1) 

(3.8) ^(5kF ) = kL -N n n - 1 

for sufficiently l a rge n. 

Proof. To prove (3e7)9 note that 

5F + 2 , o\, n 0 ru , 0 , m / n-~l , D n+L 0 0 
n _ (a - j3)(a - /3 ) + 2 _ (a - /3)(# + jg ) - 2/3 

a2 + 1 aL + 1 a - f3 

11-X , n l 
= a + j3 

L(l - P2) 
2/3 

a - p 

Since 

L
n-i + p ~ tr^j 

0 < £n - - J ^ < l (n - 1) , 

(3.7) follows. 
Next to prove (3.8) we take 

5 k F n + 2 _ k(a - flfrn - J311) + 2 = k(a - p)^1* <3n+1) - 2/3 

aL + 1 a* + 1 a - p 

. , n - 1 , 0 n+l x 2/3 . / n - 1 , «n-lv , . 0 n 2/3 
k(Qf + p ) _ _ J ± ™ = k ( a + p ) + k/3 - ^ f y 
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Since 

0 < k i 3 n - - M , - 1 

for n sufficiently large, Eq. (3.8) follows at once. 
The last two theorems were also conjectured by Hoggatt. 

4. GENERATING FUNCTIONS 

Put 

(4.1) i/r.(0) = J ] x n (j = 09 1, 2, •••) 
n£B. 

3 

In view of Theorem 2, Eq. (4.1) is equivalent to 

A a3 ( n ) + n 
(4.2) ^0(x) =J2X 

n=l 

00 
//> o\ i / \ V* ' a2(n)+n-l 
(4.3) i|/t(x) = 2 ^ x 

n=l 

00 
ab a(n)+ab a(n) (4.4) ^t + 1(x) = J ] X a W + a D a W (t - 1) , 

n=l 

<4-5> *2t ( x ) = E x b t " l a ( n ) + b t a ( n ) <t * 1) . 
n=l 

Clearly 
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I|I0(X) = xi^(x) . 

41 

Also it is evident that 

(4.7) 

so that, by (4.6), 

T-fz-E-fcW • 
J=o 

(4.8) Yz~z = tt + x)t/»t(x) + 2 *jW • 
1=2 

In the next place it follows from the definition of A that 

(4.9) i/,r(x) = x 1 + X ) «VX) 

j=r+2 
(r 3= 1) 

This implies 

(4.10) x r ^ ( x ) - x r + 1 ^ . + 1 (x ) = ,|,r+2(x) (r £ 1) 

In particular, by (4.9), 

«/»i(x) = x 1 + £ ,/,.(x) 
j=3 

Combining this with (4.8), we get 

(4.11) 1 - x (1 + x + x2)i|<1(x) + xi|/2(x) 
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By means of (4.10) and (4.11) we can express all $.(x)9 j > 1, in 
terms of ^ ( x ) . The first few formulas are 

Xlf,2(x) = T_2L~ - (l + x + x2)i//1(x) 

x4i//3(x) = - —^— + (1 + x + x2 + x 3 ) ^ ) 
X -- X 

xty4fc) = ~ ~ - + ~ 4 *jW 

Generally we have 

L -3 rxA (x); 
(4.12) x r + i i//r(x) = ( - l ) r J _ E _ L Br(x)i|/1(x) 

where 

. A r+2 ( x ) = A r + l ( x ) + x T+\W (4.13) | r + 2 r + 1 L r 

Br+2(x) = B (x) + x XB fe) 

together with the initial conditions 

JA2(x) = 1, A3(x) - 1 

{B2(x) = 1 + x + x2, B3(x) = 1 + x + x2 + x3 

It follows that 

L r 
(4.14) B (x) = 1 " x 

r 1 - x 

while 
[Continued on page 70. ] 


