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1. INTRODUCTION

Let N = 2 be a fixed integer. We wish to discuss various properties

of sequences {vn} (n =0, +1, 42, *+-) of complex numbers satisfying the
recurrence ’
(1.1) VoaN = Vpano1 Tt Ve T Vg m =0, 1, +2, --*).

We let W he the set of sequences satisfying (1.1) and we let I be the set
of all sequences Sn (n =0, £1, +#2, ...) which are non-zero on only a fin-

ite number of coordinates. For § €D and v € ¥V we define
5(v) =Z€>n vy

We will call § € I canonical if

(1.2) 8, 0= 8 =1 i = 0, +1, )
and
(1.3) 68,1 " Siuno1 = O i=20,4," )

We will say € and €' € B are equivalent (€
v €ER.

We shall also have occasion to use the translation operator T on se-

€') if €(v) = €'(v) for all

quences from D or ¥ defined by

(1.4) (Tv)n = (VED or V).

v
n+l1
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The main theorem of the present paper is the following.
Theorem A. Let € € B have integral coordinates. Then either € or
~-€ is equivalent to a canonical element of 1.

We use this theorem first to generalize a result of Kiarner's [4] for

Fibonacci numbers to Nth order Fibonacci numbers P = {Pn} defined by
(1) Pevw
(11) P—(N—Z) = e = Po = 0, P1 = 1.

The generalization is as follows:
Theorem B. Let Ky, Ky, -+, K

is a unique canonical & € Hb such that

N be positive integers. Then there

(1.5) K, = §(r'P) G =1,2-,N.

If v is a root of
(1.6) X - X e ox-1=0
we let y be the sequence in W defined by

1.7 W, =7
We let o be the largest positive root of (1.6). Note that o = 1.

As a corollary to the main theorem we get

Theorem C. A positive real number x is of the form 5() for some
canonical § € B if and only if, for some positive k and some integers Qq,
Qg ", QN we have

1.8) & = Q + Qo + .- +QNa/N—1

In Section 4, we assume that N = 3 and verify some conjectures of

Hoggatt concerning certain functions introduced and discussed in[1], [2] and
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3]. The authors believe that the results obtained in Section 4 for the case
N = 3 are strongly indicative of those that might hold for larger values of
N.

2. PROPERTIES OF CANONICAL ELEMENTS

Theorem 1. Suppose & and € € B are canonical. Then either
& -€ or € - § isequivalent to y € B.

Proof. The non-zero coordinates of 77 =8 - € are 1's and -1's.
Suppose the first non-zero coordinate of 7 (starting from the left) is -1,
and let Ny = 1 be the first 1. Now change M to 0 and add 1 to each of
nk—l’ nk_z, e nk—N' The resulting sequence is equivalent to 77, and
since & and € are cdnonical, it can be seen that not all of nk-l +1, «--,
MeN ™+ 1 are 0. Performing this ""change'" repeatedly, we finally come to
a sequence 7' equivalent to 7) all of whose non-zero coordinates are either
1 or -1. This of course implies that either 7 or -7 is equivalent to a
canonical element of .

Theorem 2. Let € € B have integral coordinates. Then either € or
-€ is equivalent to a canonical element of ®. If the coordinates of € are
non-negative then € is equivalent to a canonical element of .

Proof. We set € = € - €. The previous theorem shows that the
first statement of the present theorem follows from the second; so we assume
€ =€

Now a simple induction shows that it is enough to prove the following
statement: If € is canonical, then € + X; is equivalent to a canonical ele-

ment, where X; is defined by

Note that € tX; <€ “Xi1 7t T XN T Xier T Y1 T X where, by
Theorem 1 either vy or -y; is canonical. If —y; is canonical, then again
by Theorem 1, Y1 Xi1 is equivalent to a canonical element. Hence we
may suppose Y4 is canonical. Then ae get

E J

€ + X. E'Yl+X.

i+1 EVZ-FX

i+2
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with v4,v9, -+ canonical. But this is impossible for, if so, we would have

@ = o™ m=1,2,-")

(2.2) [ + x]@ = x;, @

This completes the proof.

Let P € ¥ be the sequence defined by the initial conditions
(2.3) P—(N-Z) = cee = PO = 0, P1 = 1.
Theorem 3. Let K be a positive integer. Then there is a unique can-
onical § € I such that, for all n,
(2.4) PK =28 P .
i

Proof. Let € & I be the sequence

_JK n =20
(2.5) €y ~ {O otherwise

Then by Theorem 2 there is a unique canonical & € B satisfying
(2.6) €v) = &), vVEVW.

Letting v be translates of P we get (2.4) immediately since €(v) = v(K
forany v € V.
The uniqueness of & will follow if we can showthat any vy € ¥ is de-

termined by its value on translates of P. We state this as a separate

theorem.
Theorem 4. V¥ is N-dimensional as a complex vector space. It is
spanned by P, TP, ---, TN_lP. Moreover, the N XN matrix
= r! = cee, N -
A = {@p) } G =01+, N-1

(n 0,i+1, -, i+N-1)
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has determinant
\it+l
1
12,1 = (<—1>N*) :

Proof. The fact that V is N-dimensional is well-known, so the cal-
culation of the determinant will complete the proof: we have

P Pia 0 Piupa

N Pin Pig Piin
i

Piin-1 Tt Piion-2

Adding the last N -1 columns to the first, using the recurrence and inter-

changing columns we get

N+1
= - A
2.7) a0 =07 a ).
But
0 0 0 0 1
0 0 0 1 1
A —
-(N-2) 0 1
1 1 .
so that
_ N+1
lA—(N-?.)l = (-1) .
Hence

) N\
]Ai]— <(w1) ) .

Theorem 5. Let v & ¥W. Then



76 FIBONACCI REPRESENTATIONS OF HIGHER ORDER — II [Jan.

(2.8) v. = vyTP + (v - V)P + (vg - V4 - vO)T_1 + oo

(N-2)p

+ (v e LV - V)T

N-1 T

Proof. Let 0 =j =N -1, The jth coordinate of the right side is

VoP .

i1 + (v + vo)Pj +oeee + (VN—l e oy - VO)Pj—(N—2)
= VP - Py - P g
F® - Py - - Pneg))
Pkt - Py

(P )

+ VN-2 - Pj—(

j-(N-2)+1 N-2)

* VN-1 Py (n-2))
The coefficient of Vi is non-zero only when j +1 -k =1, i.e., only when
k = j. In this case it is 1.

We can generalize a theorem proved by Klarner for the Fibonacci num-
bers as follows.

Theorem 6. Let Kj, Ky, K3, **°, KN be positive integers. Then
there is a unique canonical & such that

2.10) K, = 8(I'P) G=1,2 ", N .
Proof, It will be enough to find a canonical & satisfying
(2.11) K, = S(Ti‘(N‘l)P) i =1,2 -, N

because then a translate of & will satisfy (2.10). Let 7y be one of the N
roots of xN - xN"1_ ... _x-1 = 0, and let
(2.12) v =Y

Then by the previous theorem, if & exists and satisfies (2.11) it must also

satisfy
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— N-1 N-2
8(Z)—KN+(')/—1)KN_1+---+('y - — e =Y - DKy

=1+'y+...+'yN_1K +1+')/+....WN’2

1
T+ oeee +—
.),Ki

-(N-1) + e

_ -N -1
= K7 o+ Ky K W SR SUREREIS SP A

Hence we should define & to be the unique canonical form in I equivalent

to B € D where B is given by

K.+ o00 +K, (-N=i=-1)

(2.14) B, =f N '
1 0 (otherwise)
Now
N
i-(N-1) _
(2.15) B(T P) = Z By * +Kj)P—j+i—(N—1)
=1

N ¢
= 2 K| D0 Pivi--n | = %
=1 \j=1

3. FURTHER APPLICATIONS OF THE MAIN THEOREM

We recall that o is the largest positive root of

and
g:("’3a ,1,0’,"-)

Theorem 7. Let K be any positive integer. Then there exists a

unique canonical § € D such that
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K = 8@ .

Moreover,

K 54P) .

Proof. Choose & as in Theorem 3. Then

Theorem 8. A positive real number x is of the form &) for some
canonical & € B if and only if, for some positive k and some integers Q,

Qy, *°°, QN we have

(3.1) ozkx =Q1+Q2a+--»+QNaN_1 .

Proof. Suppose first that x is of the form 5(2):

(3.2) x = Z Eja] }
J:_

Then

ozkx = Zej ozj+k
j=0

and powers of o higher than aN~1 can be successively reduced to lower

powers eventually giving (3.1).
Now suppose (3.1) holds. Let € € B be defined by

(.3) € n 0 otherwise
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Then either € or -€ is equivalent to a canonical element § € B, But

€le) = x =0,

i
o

Hence we must have €

4.

For the notation used in the remainder of the paper we referthe reader
to [31.

Let Vk(M) denote the number of numbers n & Ck such that n = M.

Theorem 9. If M € Cy then

(4.1) vo(M) = M - £(M) .

More generally, if

M & C UC U - UC,
then
(4.2) v 00 = 200 - £ (= 2,34, )
Proof. Let
Kr={K§’KEIECZUC3U~-- U c.t, r =2

and let Ky = M. Then clearly JEr~1 is 1 -1, onto and monotone from Kr
to M. In particular,

4.3) card {KIK € K, K = M} = £ (M) v =1, 2, )

Hence

v.M) = card {K|K € C; K < M} = card {K[K € K, ;, K = M}
-card {K|K € F, K =M} = f7-AM) - .
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The following theorem is an immediate corollary.

Theorem 10. We have

(4.4) vG) = G -G 4 =G, * G g m= 3)
More generally
(4.5) Vr(Gn) = Gy 2 " Gpp T Gpp Y Gppa = r+1).

Theorem 11. Let k and r be fixed integers, k =1, r = 2. Then

(4.6) v kG ) = kG, __ +G )

n-r-1

for n sufficiently large.
Proof. Using Theorem 3, we let & & I be canonical such that

@.7) kG, = 228,G . =0,1,2,-+).
Hence for n sufficiently large we will have

kG €& C, U .-« UC,,

S0
_ -2 r-1
vkG ) = £ kG ) - TKkG))
- z:81 Gi+n—(r—2) - Esi Gri+n—(r—1)
(4.8) _
- an—(r—z) - an—(r—l)
- k(Grn—r * Grn—r-l)

The last three theorems were conjectured by Hoggatt.
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