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1. INTRODUCTION

A prime p possesses a Fibonacci Primitive Root g if g is a primi-

tive root of p and if it satisfies

(1) gt = g+1 (mod p) .

It is obvious that if (1) holds then so do

(2) @ =g+g (mod p) ,
(3 gt = g2+ ¢g? (mod p) ,

ete.
For example, g = 8 is one of the four primitive roots of p = 11 (the
others being 2, 6, 7), and g = 8 (only) satisfies {(1). Thus, its powers g

(mod 11) are
1, 8,9, 6, 4, 10, --- (mod 11)
and may be computed not only by
9 =8, 6 =98, 4 =98, " (mod 11) ,
but also, more simply, by
9 =8 +1, 6 =9 + 8, 4 =6 +9, - (mod 11) .
Thus the name: Fibonacci Primitive Root.

The brief Table 1 shows every p < 200 that has an ¥.P.R., and every

such g satisfying 0 < g <p that it possesses. By incomplete induction (a
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TABLE 1

e —2 2 g

5 3 71 63
11 8 79 30
19 15 109 11, 99
31 13 131 120
41 7, 35 149 41, 109
59 34 179 105
61 18, 44 191 89

fine old expression seldom used these days), we observe the following prop-

erties, all of which are easily proved in the next section.

A. Except for the singular p = 5, all p havingan F.P.R. are = 1
(mod 10).
B. Butnotall p = %1 (mod 10) have an F. P.R., since, e.g., p = 29

and 101 do not.

C. Except forthe singular p = 5, the numberof g in 6 <g < p, if
any, is 1 or 2 according as p = -1 or +1 (mod 4).

D. In the latter case, the two g satisfy

4 g Tg =pt1l.

2. ELEMENTARY PROPERTIES

The solutions of (1) are

(5) g == \/3)2_1 (mod p)

and therefore exist if, and only if, p =5, g=3, or p =10k +1, since
only these p have 5 as a quadratic residue. This proves A. For p = 29,
the two solutions of (1) are g = 6 and 24, but since these are also quad-
ratic residues of 29, they cannot be primitive roots, thus proving B. The

product of the two solutions (5) is given by
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(6) gi1g2 = -1 (mod p) .

Thus, if p = -1 (mod 4), one g is a quadratic residue and one g is not.
There can, therefore, then be at most one F.P.R. On the other hand, for

p = +1 (mod 4), consider
g2 = 'gfi

If gy is primitive, and gy is of order m, then
g = (1™,

Therefore, m is even, and so g, is primitive also. Thus, gy and g, are

both primitive, or neither is. This completes C. Finally,
(7) g +gy =1 (mod p)
and (4) follows from 0 <g < p.

3. THE ASYMPTOTIC DENSITY

Let F(x) be the number of primes p =x having an F.P.R. (We do
not distinguish inthis count whether p has one ortwo.) Then with 7(x) being

the total number of primes =x, we

Conjecture: As x- o,

@) E%;_ ~ 28 - 0.2657054465 -+
where
o0

= — —_1— = LRI
9) A pl =2l (1 oo 1)) 0.3739558136

is Artin's constant.
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Artin originally conjectured, cf. [1], [2, page 81] that if Va(x) is the

number of p =x having a as a primitive root, and if

a # b° > 1),
then
V&
(10) - A

Subsequently, [3] it was found that the heuristic argument was faulty for a =
5, -3, and infinitely many other a but it was still considered reasonable for
a=2,3, 6,7 10, etc. Both heuristically and empirically, Eq. (10) seems
correct for these a, and Hooley [4] recently proved that (10) is then true
provided one assumes a sufficient number of Riemann Hypotheses.

The heuristic argument for (8) is similar to that which leads to (10),
but we must modify two of the factors in (9). Consider the primes in the

eight residue classes

20k + 1, 3, 7, 9, 11, 13, 17, 19 .

Those in 20k + 3, 7, 13, 17 cannot have an F.P.R. For those in 20k + 11,
19 the factor

1 - 1
22 - 1)

in (9) must be deleted. This represented the probabilitythat a is not a quad-
ratic residue and therefore could be a primitive root. But for 20k + 11, 19,
one of g and g, must always be a quadratic nonresidue as we have shown
with (6). The factor

5(6 - 1)
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in (9) represented the probability that a is not a quintic residue and therefore
could be a primitive root. For 20k +9, 19 p has no quintic residues since
these p are not =1 (mod 5), and so this factor is deleted. For 20k + 1,

11, p is always =1 (mod 5), and the factor must be changed to

1—3-.

Therefore, the expected density of p in these eight residue classes
having an F. P.R. is the following:

20k + 1 16A/19 20k + 11 32A/19
20k + 3 0 20k + 13 0
20k + 7 0 20k + 17 0
20k + 9 20A/19 20k + 19 40A/19

As x- o, the eight classes of primes are equinumerous, and so (8) follows
from this table by averaging these densities. On the other hand, it is known

that the number of primes in
20k + 1, 20k + 9

will generally lag somewhat behind the other six classes since 1 and 9 are
quadratic residues of 20, cf. [5]. We therefore expect that the convergence
of F(x)/m(x) to 27A/38 will be mostly from above.

The empirical facts are given in Table 2.

TABLE 2
X F(x) & F(x)/m(x)
500 31 95 0.3263
1000 46 168 0.2738
1500 66 239 0.2762
2000 81 303 0.2673

2500 97 367 0.2643
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This seems thoroughly satisfactory.

It seems likely that one could transcribe Hooley's theory [4] to the
present variant, and thereby prove (8), assuming a sufficient number of
Riemann Hypotheses. But the theory in [4] is by no means simple, and this

transcription has not been attempted so far.

4. SEVERAL REFERENCES

Inclosing, we indicate three references related to the concept developed
here. The idea for a Fibonacci Primitive Root was suggested by Exercise 158
in [2, page 206]. It is shown there that if g is any primitive root of any

prime p, the sequence of first differences

11) gn+1 - gn (mod p)

is the same as the sequence

(12) g?d (mod p)

for some fixed displacement d. If, now, one has the first d powers of g:

d
1’ g! gzi...’g H

one can obtain all further powers additively from (11). Our construction here
forces d = 1 and therefore allows this additive computation ab initio.

In [6], W. Schooling gives a curious method of computing logarithms

based on the fact that all powers of
0 = (1 +~N5)/2
can be computed additively:

+1,

<
N
1

=¢t+ 09,
[Continued on page 181. ]



