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1. INTRODUCTION AND SUMMARY 

Consider the sequence defined by 

(1.1) u0 = 0S ut = 1, u n + 1 = u n + 2un_1 (n > 1) . 

It follows at once from (1,1) that 

(1.2) u n = | ( 2 n - ( - l ) n ) , u n + u n + 1 = 2 n . 

The f irst few values of u are easily computed* 

n 

u n 

1 

1 

2 

1 

3 

3 

4 

5 

5 

11 

6 

21 

7 

43 

8 

85 

9 

171 

10 

341 

It is not difficult to show that the sums 

k 

(1.3) / C € i U i (k = 2f 3, 4, •-.) . 
i=2 

where each €. = 0 or 1, are d is t inc t The first few numbers in (1.3) a re 

1, 3, 4, 5, 6, 8, 9, 11 , 12, 14, 15, 16, 17, 19, 20, 8 " . 

Thus there is a sequence of "missing" numbers beginning with 

(1.4) 2, 7, 10, 13, 18, 23, 28, 31, 34, 39, ••• . 

In order to identify the sequence (1.4) we first define an a r r ay of positive integers R 
the following way. The elements of the f irs t row are denoted by a(n), of the second row 
b(n), of the third row by c(n). Put 

* Supported in par t by NSF Grant GP-17031. 
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a(l) = 1 , b(l) = 3, c(l) = 2 . 

[Nov. 

Assume that the first n - 1 columns of R have been filled. Then a(n) is the smallest 
integer not already appearing, while 
(1.5) b(n) = a(n) + 2n 
and 
(1.6) c(n) = b(n) - 1 . 

The sets (a (n)} , ( b ( p ) } , {c(n)} constitute a disjoint partition of the positive integers. The 
following table is readily constructed. 

1 n 
a 
b 
c 

1 

1 

3 

2 

2 

4 

8 

7 

3 

5 

11 

10 

4 

6 

14 

13 

5 

9 

19 

18 

6 

12 

24 

23 

7 

15 

29 

28 

8 

16 

32 

31 

9 

17 

35 

34 

10 

20 

40 

39 

11 

21 

43 

42 

12 

22 

48 

47 

The table suggests that the numbers c(n) a re the "missing" numbers (1.4) and we shall 
prove that this is indeed the case . 

Let A. Denote the set of numbers k 

(1.7) 
( N = u. + u. + • • • + u. , I ki k2 k r 
| 2 < k = k 1

< : k 2 < ' * ' < 

and r = 1, 2, 3, We shall show that 

(1.8) 
and 
(1.9) 

A2k+2 = a b k a ( £ > U abkc(N) 

A2k+i = bk | l (5? u b k°Q? 

(k > 0) 

(k > 1) 

where N denotes the set of positive integers. 
If N is given by (1.7), we define 

(1.10) 
Then we shall show that 

(1.11) 

and 

(1.12) 

e(N) = u + u + . . . + u 
r r r 

e(a(n)) = n 

e(b(n)) = a(n) . 

Clearly the domain of the function c(n) is res t r ic ted to a(N) U b(N). However, s ince, as 
we shall see below, (b(n) - 2 ) G a(N) and 
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(1.13) 
it is natural to define 
(1.14) 
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e(b(n) - 2 ) = a(n) f 

e ( c (n ) ) = a(n) . 

501 

Then e(n) is defined for all n and we show that e(n) is monotone. 
The functions a, b , c satisfy various relations. In part icular we have 

a2(n) » b(n) - 2 = a(n) + 2n - 2 

ab(n) = ba(n) + 2 = 2a(n) + b(n) 

ac(n) = ca(n) + 2 = 2a(n) + c(n) 

cb(n) = bc(n) + 2 = 2a(n) + 3c(n) 4-2 . 

Moreover if we define 
(1.15) 
then we have 

d(n) = a(n) + n 

da(n) « 2d(n) - 2 

db(n) * 4d(n) 

dc(n) = 4d(n) - 2 

It follows from (1.11) and (1.12) that every positive integer N can be written in the form 

(1.16) 

where now 

N = u, + u. + • • • + ui 

1 < ki < k9 < 

k » 

< kr 

Hence N is a "missing" number if and only if kj = 1, k2 = 2. 
The representation (1.16) is in general not unique. The numbers a(n) are exactly those 

for which, in the representation (1.7), kt is even. Hence in (1.66) if we assume that kj is 
odd, the representation (1.16) is unique. We accordingly call this the canonical representation 
of N. 

Returning to (1.15), we define the complementary function dT(n) so that the sets | d (n )} , 
|df (n)} constitute a disjoint partition of the positive integers. We shall show that 

(1.17) d(n) = 2df(n) 

n 

df 

d 

1 

1 

2 

2 

3 

6 

3 

4 

8 

4 

5 

10 

5 

7 

14 

6 

9 

18 

7 

11 

22 

8 

12 

24 

9 

13 

26 

10 

15 

30 

11 

16 

32 

12 

17 

34 

13 

19 

38 

14 

20 

40 

15 

21 

42 

16 

23 

46 j 
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Let S(n) denote the number of d(k) ^ n and let 6f(n) denote the number of dT(k) — n. 
We show that 

*«> - [i] - m • [f] - -
6'(N) = [N] - [ | ] + [»] . ... . 

Finally, if N has the canonical representation (1.16) we define 

X ^ ki 
(1.18) f(N) = > (-1) * . 

1=1 
It follows that 
(1.19) a(N) = 2N + f(N) 
and 

(1.20) d(N) = a(N) + 
r k. 

i=l 

so that there is a close connection with the binary representation of an integer. 
Even though there is no "natural" irrationality associated with the sequence {u }, it is 

evident from the above summary that many of the resul ts of the previous papers of this ser ies 
[2 , 3, 4, 5, 6] have their counterpart in the present situation. 

The material in the final two sections of the paper is not included in the above summary. 

2. THE CANONICAL REPRESENTATION 

As in the Introduction, we define the sequence {u } by means of 

u0 = 0, ui = 1, u ,- = u + 2u - (n ^ 1) . 
u 1 s n+1 n n-1 v 

We first prove the following. 
Theorem 2.1. Every positive integer N can be written uniquely in the form 

(2.1) N = €l U l + e2u2 + • . . , 
where the €. = 0 or 1 and 
(2.2) et = . . . = c = 0 , e k = 1 ^ ^ k odd . 

Proof. The theorem can be easily proved by induction on n as follows. Let C ? con-
sist of all sequences 

(el , e2> • • • . €2n) (€i = 0 or 1) 
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satisfying (2.2). Then the map 

(elf €2J - . - , e 2 n ) — ^€l U i + e2u2 + . . . + e2nu2n 

is 1 - 1 and onto from C 2 to [0, • • - , u 2 - - l ] . Clearly 0 2 — ^ [ 0 5 l ] . Assuming that 

we see that 

since 

C 2 n - > [ 0 , . . . , u 2 n + 1 - l ] . 

C 2 n + 2 - ^ [ 0 ' ' • • ' u2n+l " l ] [ u 2 n + l ' " • • 2 u 2 n + l " ^ 

U [ u 2 n + 2 + 1 ' " - ' U 2 n + l + U 2 n + 2 - 1 ] 

U [ u 2 n + l + U2n+2 2 u 2 n + l + U2n+2 " 1 ] 

= [°« • • • ' U 2 n + 3 " ^ 

2 u 2n+l " l = U2n+2 

If (2.2) is satisfied we call (2.1) the canonical representation of N. 
In view of the above we have also 
Theorem 2.2. If N and M are given canonically by 

N = £ e .u. , M = £ 8.U. , 
then 
(2.3) N ^ M if and only if ^ e . 2 1 < £ ^ 2 * . 

Let N be given by (2.1) and define 

(2.4) 0(N) = E 6 ! 2 " -
Note that since 

(2.5) u n = | ( 2 n - ( - l ) n ) f 

we have 

(2.6) N = | ( 0 ( N ) - f(N)) , 

where 

(2.7) f(N) = €( - l ) 1€i . 

Theorem 2.3. There are exactly N numbers of the form 2TC, ks K odd, l e ss than or 
equal to 0(N), 

Proof. The N numbers of the stated form are simply 

0(1), 0(2), ••-, 0(N) . 
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If N is given canonic ally by 

N = €iU! + e2u2 + ••• , 
we define 
(2.8) a(n) = €i\x2 + €3u3 + • • • . 

This i s of course never canonical. Define 

(2.9) b(n) = a(N) + 2N = etu3 + e ^ + . . . . 

The representation (2.9) is canonical. 

Suppose e2k+l *s ^n e ^ r s ^ n o n z 6 r o e. in the canonical representation of N. Then, 
since 

ut + u 2 + . . . + u 2 k + 1 = u 2 k + 2 , 

we see that a(N) is given canonically by 

(2.10) a(n) = U l + u2 + . . . + u 2 k + 1 + 0 .u 2 k + 2 + e 2 k + 2 u 2 k + 3 + ••• . 

Let c(N) = b(N) - 1. Then, since 

ut + u 2 + . - . + u 2 k + 2 = u 2 k + 3 - 1 , 

c(N) is given canonically by 

(2.11) c(N) = ut + u2 + . . . + u 2 k + 2 + 0 . U 2 k + 3 + e 2 k + 2 u 2 k + 4 + — . 
We now state 
Theorem 2.4. The three functions a, b , c defined above are str ict ly monotone and 

their ranges a(N), b(N), c(N) form a disjoint partition of N. 
Proof. We have 

(2.12) 0(a(N) + 1) = 20(N) + 2 
and 
(2.13) 0(b(N)) = 40(N) . 

Since <j) is 1 - 1 and monotone, it follows that a, b , c are monotone. By (2.10), a(N) 
consists of those N whose canonical representations begin with an odd number of lTs ; b(N) 
of those which begin with 0; and c(N) of those which begin with an even number of l T s . 
Hence all numbers are accounted for. 

It i s now clear that the functions a, b, c defined above coincide with the a, b , c de -
fined in the Introduction. 

The following two theorems a re easy corol lar ies of the above. 
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u. with i > 2. 
l 

Theorem 2.5. c(N) is the set of integers that cannot be written as a sum of distinct 
th i > 2. 
Thus the c(N) a re the "missing" numbers of the Introduction, 
Theorem 2.6. If K-$ c(N), then K can be written uniquely as a sum of distinct u. 

with i >: 2. 

3. RELATIONS INVOLVING a, b, AND c 

We now define 
d(N) = a(N) + N. 

Since 
Uk + \ + l = ^ ' 

it follows at once from (2.4) and (2„8) that 
(3.1) d(N) = 0(N). 
Hence, by (2.6), we may write 
(3.2) 2N = a(N) - f(N) . 

Let dT denote the monotone function whose range is the complement of the range of d. 
Since the range of 0 (that i s , of d) consists of the numbers 2TC, with k,K both odd, it 
follows that the range of dT consists of the numbers 2TC with k even and K odd. We have 
therefore 
(3.3) d(N) = 2d'(N) . 

Thus (2.12) and (2.13) become 
(3.4) d(a + 1) = 2d + 2 
and 
(3.5) db = 4d , 
respectively. 

F rom (2.10) we obtain 
(3.6) da = 2d - 2 
and 
(3.7) d'a = d - 1 . 

Theorem 3.1. We have 

(3.8) a2(N) = b(N) - 2 = a(N) + 2N - 2 

( 3 e 9 ) abftO = ba(N) + 2 = 2a(N) + b(N) 
(3.10) ac(N) = ca(N) + 2 = 2a(N) + c(N) 

(3.11) cb(N) = bc(N) + 2 = 2a(N) + 3c (N) 

(3.12) da(N) = 2d(N) - 2 

(3.13) db(N) = 4d(N) 

(3.14) dc(N) = 4d(N) - 2 . 
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Proof. The first four formulas follow from the definitions. For example if 

then 

and 

N = U2k+1 + €2k+2U2k+2 + • • ' ' 

a(N) = l ,u t + Lu2 + . . . + l . u 2 k + 1 + ^ 2 k + 2 u 2 k + 3 

a 2 ( N ) = lmu* + • " + 1 , U2k+2 + €2k+2U2k44 

= U2k+3 - 2 + £2k+2U2k+4 + ••• 

= b(N) - 2 . 

Formula (3.12) is the same as (3.6) while (3.13) and (3.14) follow from the formulas for ab 
and ac. 

In view of Theorem 2.6, every 
N G a(N) U b(N) 

can be written uniquely in the form 
(3.15) N = S2u2 + 53u3 + . . . 

with 62 = o, 1. We define A, as the set of N for which 6 is the first nonzero 5.. 
Theorem 3.2. We have 

(3.16) A 2 k + 2 = abka(N) U abkc(N) (k > 0) 

(3.17) A 2 k + 1 = bka(N) U bkc(N) (k ^ 1) . 

Proof. By (2.9), (2.10) and (2.11), the union 

a(N) U c(N) 

consists of those K for which 

Hence, applying a, we have 

and, applying b, 

€t = €i(K) = 1 . 

A2 = a2(N) U ac(N) 

A3 = ba(N) U bc(N) . 

Continuing in this way, it is c lear that we obtain the stated resul ts . 
Theorem 3.2 admits of the following refinement. 
Theorem 3.3. We have 

(3.17) abka(N) = ( N G A
2 k + 2 | N = a b k a ( n ) = n (mod 2)} 

(3.18) abkc(N) = ( N E A 2 k + 2 | N = abkc(n) = n + 1 (mod 2)} 

(3.19) bka(N) = ( N G A
2 k + 1 | N = bka(n) = n (mod 2)} 
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(3.20) bkc(N) = {N G A 2 k + 1 j N = bkc(n) = n + 1 (mod 2)} . 

Proof, The theorem follows from Theorem 3.2 together with the observation 

(3.21) a(n) s b(n) = n$ c(n) = n + 1 (mod 2) . 
Let 

N E a(JJ) U b(N) , 
so that (3.15) is satisfied. We define 
(3.21) e(N) = V i + 63u2 + . . . . 

Then from the definition of a and b we see that 

(3.22) e(a(n)) = n 
and 
(3.23) e(b(n)) = a(n) . 
Since 

a2(n) = b(n) - 2 < c(n) < b(n) , 
we define 
(3.24) e(c(n)) = a(n) . 

Thus e(n) is now defined for all n. 

1 n 

e 

! n 

e 

1 

1 

21 

11 

2 

1 

22 

12 

3 

1 

23 

12 

4 

2 

24 

12 

5 

3 

25 

13 

6 

4 

26 

14 

7 

4 

27 

15 

8 

4 

28 

15 

9 

5 

29 

15 

10 

5 

30 

16 

11 

5 

31 

16 

12 

6 

32 

16 

13 

6 

33 

17 

14 

6 

34 

17 

15 

7 

35 

17 

16 

8 

36 

18 

17 

9 

37 

19 

18 

9 

38 

20 

19 

9 

39 

20 

20| 

io: 
40^ 

20 i 

Theorem 3.4. The function e is monotone. Indeed e(n) = e(n - 1) if and only if 

n E b(N) U c(N) . 
Otherwise (n G a(N)) 

e(n) = e(n - 1) + 1 . 

Proof. We have already seen that 

e b(n) = e c(n) = e c(n) - 1 = a(n) . 

Thus it remains to show that 
(3.25) e(a(n)) = e(a(n) - l ) + 1 . 

Let 

n = U2k+1 + €2k + 2 U 2k + 2 + e e e 
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be the canonical representation of n. Then 

a ( n ) = U 2 k + 2 + e 2k + 2 U 2k + 3 + ' " • 
Since 

u2k+2 - 1 = u2 + u 3 + u 4 + . . . + u 2 k + 1 , 
we get 

It follows that 
a(n) - 1 = u2 + u3 + . . . + u 2 k + 1 + €2 k + 2 u 2 k + 3 + . . . . 

e(ato) - 1) = U l + u2 + . . . + u 2 k + €2 k + 2 u 2 k + 2 + . . . 

= (u2k-KL " X) + £ 2 k + 2 U 2 k + 2 + '" 
= n - 1 . 

This evidently proves (3.25). 
Theorem 3.5. We have 

/o 9a\ \a (n + 1) = a(n) + 3 (n G afl®) 
{6'^} j a (n + 1) = a(n) + 1 (n E bflj) U cC®) . 

Proof. Formula (3.4) is evidently equivalent to 

(3.27) a(a(n) + l ) = b(n) + 1 . 
By (3.8) 

a2(n) = b(n) - 2 = c(n) - 1 , 

so that we have the sequence of consecutive integers 

(3.28) a2(n), c(n), b(n), a a(n) + 1 . 

On the other hand, by (3.9) and (3.10) 
ab(n) = ac(n) + 1 . 

Finally, since 
b(n) + 1 E a(n) , 

we have, by (3.28), 
a(b(n) + 1 ) = a2(a(n) + l ) = b a(n) + 1 - 2 

= a(a(n) + l ) + 2a(n) 
= 2a(n) + b(n) + 1 
= ab(n) + 1 

This completes the proof of the theorem. 
If we let a(n) denote the number of a(k) < n , it follows at once from Theorem 3.5 

that 

(3.29) a(n) = n + 2or(n) (n ^ 1) . 

This i s equivalent to 
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(3.30) df(n) = n + a(n) . 
We shall now show that 

(3.31) a(n + 1) = e(n) . 

Let n Ga(N) U b(N). Then 

and 
n = u k = €k + i u k + i + - " ( k - 2 ) 

Also 

so that 

e(n) = V 1 + €k + l U k + . . . • 

n + 1 = % + u k + ek+i uj^+i + • • • (canonical) , 

i(n + 1) = u2 + u k + 1 + €k + 1 u k + 2 + • • • . 
It follows that 
(3„32) a(n + 1) - 2e(n) = n + 1 (.n $ c(N)) . 

If n e c(N) we have e(n) = e(n + 1). Since n + 1 E b(N), we may use (3.32). Thus 

2e(n) = 2e(n + 1) = a(n + 2) - (n + 2) = a(n + 1) - (n + 1) , 

by (3.26). Hence 
a(n + 1) - 2e(n) = n + 1 

for all n. This is evidently equivalent to (3,31). 
This proves 
Theorem 3.6. The number of a(k) ^ n i s equal to e(n). Moreover 

(3.33) a(n) = n + 2e(n - 1 ) (n > 1) . 

A few special values of a(n) may be noted: 

(3.34) a ( 2 2 k _ 1 ) = 2 2 k (k > 1) 

(3.35) a (2 2 k ) = 2 2 k + 1 - 2 (k ^ 1) 

(3.36) a ( 2 2 k _ 1 - 2) = 2 2 k - 4 (k > 1) 

(3.37) a (2 2 k - 2) = 2 2 k + 1 - 6 (k > 2) . 

4. COMPARISON WITH THE BINARY REPRESENTATION 

If N is given in i ts binary representation 

(4.1) N = To +7l ° 2 +72 e 22 + . . . , 

where % = 0 or 1, we define 
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(4.2) 6(N) = y0u0
 + n^i + r2u2 + • ' • 

and 
(4.3) (N) = X ^ t - D 1 . 
Then we have 
(4.4) S(d(N)) = N 
and 
(4.5) X(d(N)) = f(N) . 
A simple computation leads to 

6<N, = [ » ] - [ » ] + [ « ] - . . . . 
Let 

(4.7) 6-(N) = N - [ ! ] + [ f ] - • • • 

so that 
(4.8) <5(N) + fr(N) = N . 

Theorem 4 .1 . The number of d(k) ^ n is equal to S(N). The number of df(k) ^ n i s 
equal to fr(N). 

Proof. Since 5 is monotone, we have d(k) ^ n if and only if 

k = 6 d(k) ^ 6(n) . 

Hence, in view of (4.8), the theorem is proved. 
We have seen in Section 3 that if N has the canonical representation 

N = ejUj + e2u2 + • e • 

then 
(4.9) a(N) - 2N = f(N) , 
where 

f(N) = £ ( - D 1€i . 
i 

It follows that 

(4.10) d(N) = a(N) + N = £ ^ ' 21 . 
i 

Replacing N by d(N), df(N) in (4.9), we get 

(4.11) a(d(N)) - 2d(N) = f(d(N)) 
and 
(4.12) a(d»(N)) - 2d'(N) = f(d(N)) . 
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Theorem 4.2. The function f(d) takes on every even value (positive8 negative or zero) 
infinitely often. The function f(df) takes on every odd value (positive or negative) infinitely 
often. 

Proof. Consider the number 

N = UJL + u3 + u5 + . . . + u 2 k _ x 

= | (21 + 1) + | (23 + 1) + . . . + | ( 2 2 k _ 1 + 1) 

- * { ! « * - » • * ) . 
Clearly 
(4.13) N s 2 (mod 4) 
if and only if 
(4.14) k = 0 (mod 4) . 

It follows from (4.13) that N E d(N). Also it is evident that 

(4.15) f(N) = -k, k = 0 (mod 4) . 

In the next place the number 

N = u3 + u5 + • • • + u 2 k + 1 

« | (23 + 1) + | (2B + 1) + . . . + | ( 2 2 k + 1 + 1) 

= 3k (mod 8) . 

Hence for k = 2 (mod 4), we have N = 2 (mod 4) and so as above N G d(N). Also it is 
evident that (4.15) holds in this case also. 

Now consider 
N = uj + u2 + u4 + u6 + • • • + u 2 k 

= 1 + | (22 - 1) + | (24 - 1) + • • • + | (2 2 k - 1) 

= 1 + k (mod 4) . 

Thus for k odd, N G d(N). Also it is c lear that 

f (N) = k - 1 . 

This evidently proves the first half of the theorem. 
To form the second half of the theorem we first take 

Then 
N = u4 + u3 + u5 +. • • • + u2k_i • 
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N 5 k (mod 2) . 
Thus for k odd, N E d»(N). Moreover 
(4.16) f(N) = -k . 

Next for 

N = U! + u2 + 114 + u8 + • • • + U2k + u2k+2 
we again have 

N 5 k (mod 2) , 

so that N E d ' ( N ) for k odd. Clearly 
(4.17) f(N) = k. 

This completes the proof of the theorem. 
As an immediate corollary of Theorem 4.2 we have 
Theorem 4.3. The commutator 

ad(N) - da(N) = fd(N) + 2 

takes on every even value infinitely often. Also the commutator 

ad'(N) - d'a(N) = fd'(N) + 1 

takes on every even value infinitely often. 

5. WORDS 

By a word function, or briefly, word, is meant a function of the form 

(5.1) w = a v cr a br cr ••• , 

where the exponents a re arbi t rary non-negative integers. 
Theorem 5.1. Every word function w(n) can be l inearized, that is 

(5.2) w(n) = A a(n) + B n - C (A > 0) , 
w w w w 

where A , B , C a re independent of n. Moreover the representation (5.2) is unique. 
Proof. The representation (5.2) follows from the relations 

a2(n) = a(n) + 2n - 2 

(5.3) { ab(n) = 2a(n) + b(n) = 3a(n) + 2n 

ac(n) = 2a(n) + c(n) = 3a(n) + 2n - 1 . 

If we assume a second representation (5.2) it follows that a(n) is a l inear function of 
n. This evidently contradicts Theorem 3.5. 
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Theorem 5.2. For any word w, the coefficient B in (5.2) is even. Hence the func-
•———-——-———— w 

tion d is not a word. 
Proof. Repeated application of (5.3). 
Remark. If we had defined words as the set of functions of the form 

(5.4) a ^ b V c l 8 - . - , 

then, in view of Theorem 4.3, we would not be able to a s se r t the extended form of Theorem 
5.1. 

Combining (5.3) with (5.2), we get the following recurrences for the coefficients A , 
w B , C 

w w 

(5.5) 

A wa 
B 

wa 
C 

wa 

= 

= 

= 

A + w 
2A w 

B w 

2A + C w w 

A , = 3A + B 
wb w w 

(5.6) { B , = 2A + 2B 
1 wb w w 

(5.7) 

\ wb 

A wc 
B 

wc 

= C w 

3A 
w 

2A w 

+ 

+ 

B 
w 

2B 
w 

C = A + B + C wc w w w 
In part icular we find that 

(5.8) ak(n) = uRa(n) + S u ^ n - ( u ^ - 1) , 
k 

(5.9) ab (n) = u 2 k + 1 a(n) + (u
2k+l ' 1 * n ' 

(5.10) ack(n) = u ^ ^ a f e i ) + ( u 2 k + 1 - l)n - | ( 4 u 2 k - k) , 

(5.11) bk(n) = u2ka(n) + (u2 k + l)n , 

(5.12) akb3(n) = \ + 2 j a ( n ) + S u ^ . ^ n - (u k + 1 - 1) , 

(5.13) b3ak(n) = uk + 2 ja(n) + 2 u k + 2 j _ i n - ( u k + 2 j + 1 - u 2 j + 1 ) , 

(5.14) akb3(n) - bJak(n) = u k + 2 j + 1 - u k + 1 - u 2 j + 1 + 1 

= | ( 2 k - l ) (2 2 j - 1 ) . 

We shall now evaluate A and B explicitly. For w as given by (5.1) we define the 
weight of w by means of 
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(5.15) p = p(w) = a + 2/3 + 2y + a + 2j3! + 2y» + • • . . 
We shall show that 
(5.16) A = u , B = 2u n . 

w p w p -1 

The proof is by induction on p. For p = 1, (5.16) obviously holds. Assume that 
(5.16) holds up to and including the value p. By the inductive hypothesis, (5.5), (5.6), (5.7) 
become 

(5.17) 
A = A + B = u + 2 u - = u t 1 wa p p p p-1 p+1 
B = 2A = 2u wa p p 

I A = A = 3A + B = 3u + 2u . = u LO wb wc p p p p-1 p+2 

B = B = 2A + 2B = 2u + 2u , = u ^ wp wc P P P p -1 P + l 

This evidently completes the induction. 
As for C , we have w 

C = 2u + C wa p w 
(5.19) / C , = C 

x wb w 
C = u _ + C wc p+1 w 

Unlike A and B , the coefficient C is not a function of the weight alone. For w w w & 

example 
C&2 = 2, C b = 0, C c = 1 , 

Ca3 = 4 ' C a b - °- C a c = 1 • 

Repeated application of (5.19) gives 

C k = 2(Ui + u2 + • • • + u^ .x ) = u k + 1 - 1 

C
c k = u i + *' * + u k = \ (%+2 " W * 

of which the first two agree with (5.8) and (5.11). 
We may state 
Theorem 5.3. If w is a word of weight p , then 

(5.20) w(n) - u a(n) + 2u - n - C , 
P p—J. w 

where C can be evaluated by means of (5.19). If w, wf are any words of equal weight, then w 

(5.21) w(n) - w!(n) = C . - C . ' wf w 
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Theorem 5.4. For any word w, the representation 

w = a b c a br c ; 

i s unique. 
Proof. The theorem is a consequence of the following observation. If u, v a re any 

words, then it follows from any one of 

ua = va, ub = vb9 uc = vc 
that u = v. 

Theorem 5.5. The words u9v satisfy uv = vu if and only if there is a word w such 
that 

r s 
U = W j V = W 5 

Theorem 5.6. In the notation of Theorem 5.3, C = C! if and only if w = wf. 
' w w J 

where r9 s are non-negative integers 
Theorem 5.6. In the notation of 
Remark. It follows from (5.20) that no multiple of df (n) is a word function. 

6. GENERATING FUNCTIONS 

Put 

(6.1) AW = V x a ( n \ B(x) = V x b ( n )
5 C(x) = > " x c ( n ) 

00 

n=l n=l n=l 
and 

0° _ °° M. 

(6.2) D(x) = > xu 

n=l n=l 

where of course | x j < 1. Then clearly 

(6.3) A(x) + B(x) + C(x) x 
1 - x 

and 

(6.4) D(x) + Di(x) = YZT-£° 

Since 
b(n) = c(n) + l s d(n) = 2d'(n) , 

(6.3) and (6.4) reduce to 

(6.5) A(x) + (1 + x)C(x) = r
X - 7 , 

and 

(6.6) Dt(x) + Di(x2) = r ~ ^ , 

respectively. 
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It follows from (6.6) that 

X X 2 , X 4 

Di(x) = r ^ - - — ^ - + 
1 _ x l - x2 I - x4 

00 00 . 

k=0 r=l 

= £*•!>>*, 
n=l 0k 

2 r=n 
so that 

d'(n) = Y ^ (-l)k . 
2 r=si 

This i s equivalent to the resul t previously obtained that 

d'(N) = { 2 m M | m even, M odd}. 

Theorem 6.1. Each of the functions A(x), B(x), C(x), D(x), DA(x) has the unit circle 
as a natural boundary. 

Proof. It will evidently suffice to prove the theorem for A(x) and Di(x). We consider 
first the function Di(x). 

To begin with, Di(x) has a singularity at x = 1. Hence, by (6.6), Dt(x) has a singu-
lar i ty at x = - 1 . Replacing x by x2, (6.6) becomes 

Dt(x2) + Dt(x4) = 
1 - x2 

We infer that DA(x) has singularities at x = ±i. Continuing in this way we show that D^(x) 
has singularities at 

x = e
2 k ? r i / ^ (k = 1, 3, 5, . . . , 2 n - 1; n = 1, 2, 3 , • • •) . 

This proves that Di(x) cannot be continued analytically across the unit c i rc le . 
In the next place if the function 

00 

f(x) 
n=l 

00 

where the c = 0 or 1, can be continued across the unit c i rc le , then [ 1 , p. 315] 
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P(x) f(x) k f 

1 - x 

where P(x) is a polynomial and k is some positive integer. Hence 

(6.7) c n = c n _ k (n > n0) . 

Now assume that A(x) can be continued across the unit c i rc le . Then by (6.7), there exists 
an integer k such that 

a(n) = a(nt) + k (n > n0) , 

where n4 depends on n. It follows that 

(6.8) a(n) = a(n - r) + k (n > n0) 
for some fixed r . This implies 
(6.9) d(n) = a(n - r) + k + r (n > u0) . 

However (6.9) contradicts the fact that D(x) = D^x2) cannot be continued across the unit 
c i rc le . 

Theorem 6.2. Let w(n) be an a rb i t ra ry word function of positive weight and put 

(6.10) Fw(x) = > x w ( n ) 

00 

n=l 

Then F (x) cannot be continued across the unit c i rcle . w 
Proof. Assume that F (x) does admit of analytic continuation across the unit c i rc le . 

Then there exist integers r , k such that 

w(n) = w(n - r) + s (n > n0) „ 

By (5,2) this becomes 
A a(n) + B r = A ( n - r ) + k . w w wv 

This implies 
(6.1D Awd(n) = Awd(n - r) + (Aw - B w ) r + k . 

Since A > 0, (6.11) contradicts the fact that D(x) cannot be continued. 
Put 

00 

(6.12) E(x) = \ j x G ( n ) • 
n=l 



518 REPRESENTATIONS FOR A SPECIAL SEQUENCE [Nov. 

Then, by Theorem 3.4, 

x (6.13) E(x) = Y^-£ + 2ACx) 

Also 

(6.14) (1 - x)_1A(x) = \ ^ e(n) x11 

n=l 

In the next place, by (3.8), (3.9), and (3.10), 

J2 *a2(n) + ] £ *ab(n) + ] £ *ac(n) 

Since 

it follows that 

A(x) = > x* U1/ + 

= x 2B(x) + (1 + x 1 ) F a b ( x ) 

A(x) + (1 + x_ 1)B(x) - x 

1 - x 

(6.15) (1 + x)2Fa b(x) = (1 + x + x2)A(x) - j - f - j 

Let w, wf be two words of equal weight. Then by (5.21), 

(6.16) x ° w F (x) = x C w f F Ax) . 
\ W W! 

Thus it suffices to consider the functions 
F k(x) (k = 1, 2, 3, • • • ) . 

We have a 

By (5.8) 
F k ( x ) = F k _ l ( x ) + F (x) + F k ( x ) 

a a a b a c 

akb(n) = ukab(n) + 2uk_1b(n) - (u k + 1 - 1) 

= uk(3a(n) + 2n) + 2uk_1(a(n) + 2n) - ( i^ - 1) 

= (3uk + 2uk_1)a(n) + 2(ufe + 2uk_x )n - ( u ^ - 1) 

= uk + 2a(n) + 2u k + 1 n - ( u ^ - 1) 

= ak + 2(n) + 2 k + 1 

a c(n) = ukac(n) + 2uk_1c(n) - (\+1 - D 

= uk(3a(n) + 2n - 1) + 2uk_1(a(n) + 2n - 1) - (u k + 1 - 1) 

= uk+2a(n) + 2uk+1n - (2uk+1 - 1) 

[Continued on page 550. ] 

a (n) 4- u k + 2 


