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Denote the convergents of the continued fraction (Pringsheim's notation [2]),
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P, /Qy = 0/1. Denote the convergents of the 'cut

(k)
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where the places denoted by the asterisks may be filled in by any quantities desired. Hence,

a4l is introduced in this last determinant by choosing the second row to be
am+1’ bm+1s -1, 0, 0, Tt 0
and get
Pm+k. = Qm,kPm * Pm,kPm—l ’
Similarly,
Qm+k = Qm,ka * Pm,ka—l

These results may be derived without the use of determinants [1, p. 40] but the pro-

cedure is rather lengthy.

REFERENCES
1. Alexey N. Khovanskii, "The Applications of Continued Fractions,'" translated to English
by Peter Wynn, P. Noordhoff, Ltd. , Groningen: The Netherlands, 1963.

2. A. Pringsheim, "Ueber die Convergence unendlicher Kettenbruche,' Sitzungsber. der
Math. Phys. Klasse der Kgl. Bayer. Akad. Wiss., Munchen 28 (1898), pp. 295-324.



