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Denote the convergents of the continued fraction (Pringsheim's notation [ 2 ] ) , 

fO; a /b 1 

by P n / Q n 5 n = 0, 1, 2 
off" continued fraction 

5 5 where P0 /Q0 = 0 /1 . Denote the convergents of the "cut 

[> an /bn] 
L Jn= 

:m+l 

by P , /Q . , where P /Q = 0, P , /Q = a , , / b ,.,, etc. Now, 
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LaPlace 's expansion applied to the last k columns gives 
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0 - 1 0 ••• 0 

~m+k m m , k m+1 m - 1 
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[Dec. 
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where the places denoted by the as ter isks may be filled in by any quantities desired. Hence, 
a .. is introduced in this las t determinant by choosing the second row to be 

and get 

Similarly, 

a , - , b . - , - 1 , 0, 0, m+1 m+1 ' ' ' 

P J _ . = Q . P + P . P -m+k ^ m , k m m , k m - 1 

m+k m , k m m , k m - 1 

These results may be derived without the use of determinants [1, p. 40] but the pro-
cedure is ra ther lengthy. 

REFERENCES 

1. Alexey N. Khovanskii, nThe Applications of Continued Frac t ions , " translated to English 
by Peter Wynn, P. Noordhoff, Ltd. , Groningen: The Netherlands, 1963. 

2. A. Pringsheim, "Ueber die Convergence unendlicher Kettenbruche," Sitzungsber. der 
Math. Phys. Klasse der Kgl. Bayer. Akad. Wiss. , Munchen 28 (1898), pp. 295-324. 


