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Let n(a,b) and N(a,b) be the number of divisions needed in finding the greatest com-
mon divisor of positive integers a ,b using the Euclidean algorithm and the least absolute 
value algorithm, respectively. In addition to showing some properties of periodicity of 
n(a, b) and N(a,b), the paper gives a proof of the following theorems: 

Theorem 1. If n(a,b) = k > 1, then a + b > f. „ and the pair (a,b) with the smal l -
est sum such that n(a,b) = k is the pair (f, - , fk+9)» where 

fi = 1, f 2 = 1 and f ^Q = f , - + f , n = 1, 2 , 3 , • • • . 
1 l n+2 n+1 n 

Theorem 2. If N(a,b) = k > 1, then a + b > x. -. and the pair (a,b) with smallest 
sum such that N(a,b) = k is the pair (x. , x , + x . ), where x1 = 1, x2 = 2, and x, = 
2x, 1 + x, , k = 3, 4, ' • • . These resul ts may be compared with other results found in 
[ 1 ] " [ 2 ] . " 

Since n(a,b) = n(b,a) we can assume a S b . To prove the first theorem, let n(a,b) = 
k and assume the k steps in finding (a,b) are 

b = qAa + rt 

a = q 2 r ! + r2 

r k - 3 = q k r l r k - 2 + r k - l 
r k - 2 = q k r k - l 

If k = 1, then rt = 0 so b = qja and the smallest pair (a,b) is (1,1) so 

a = fA , b = f2 , a + b = f3 = 2. 

Note this case is not included in the theorem. In case k > 1 it is evident the smallest val-
ues of a ,b will be obtained for r. . = 1 and all the qTs = 1 except q, , which cannot be 
1 but is 2. Thus the pairs (*".-,, r. 2 ) , • • • , (a,b) are (1,2), • • • , (fk+-,, f ^ o ) - Since 
a + b = f. - + f.+2 = fk+o> t n e theorem is proved. 

We have 
Corollary 1. If a + b < ffe+3, then n(a,b) < k for k > 1. 
For b = a + i, i a fixed positive integer so that b < 2a, the quantities satisfy 
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(1) n(a + mi , a + [m + l ] i) = n(a, a + i), m = 0, 1 , 2 , • • • . 

This follows from the remark that if n(a,b) = k, then n(a + b, 2a + b) = k + 1, k = 1, 2, 
3, • • • . This is evident since the first division would be (2a + b) = l(a + b) + a and 

n(a, a + b) = n(a, b) = k . 

Equation (1) is a consequence since each n is one more than n(i, a + mi) = n(i ,a) . The 
periodicity is evident in the table of values of n(a,b) for a ^ b < 2a. (See Fig. 1.) 

a = 1 1 
2 12 
3 1 2 3 
4 1 2 2 3 
5 1 2 3 4 3 
6 1 2 2 2 3 3 
7 1 2 3 3 4 4 3 
8 1 2 2 4 2 5 3 3 
9 1 2 3 2 3 4 3 4 3 
10 1 2 2 3 3 2 4 4 3 3 
11 1 2 3 4 4 3 4 5 5 4 3 
12 1 2 2 2 2 4 2 5 3 3 3 3 
13 1 2 3 3 3 5 3 4 6 4 4 4 3 
14 1 2 2 4 3 4 3 2 4 5 4 5 3 3 
15 1 2 3 2 4 2 3 3 4 4 3 5 3 4 3 

Figure 1 
n(a,b) for b = a, a + 1, • • • , 2a - 1 . 

To prove Theorem 2, assume the steps in finding (a,b) with N(a,b) = k are 

b = qta ± rt 

a = q2ri ± r2 

r k - 3 = qk-lrk-2 ± r k - l 

where 

r k - 2 = q k r k - l 

0, < r i < | a , 0 < r2 < I r i > • • • , 0 < V l < | r k _ 2 . 

Because of the restr ict ion on the remainders , we must have q2, q3, ••• , q^ equal to or 
greater than 2. But since 2r. + r . + 1 < 3r. - r . + 1 , i = 1, • • • , k - 1, in each case we ob-
tain the smallest sum a + b with q2 = • • • = q. = 2 and with qt = 1. For k = 1, we 
have 1 = 1-1 so a = b = 1. Set x, = r. ,. For k > 1, a = x, = 2 x

k _ i + \ 2
 anc^ 

b = x. ., = x. + x, ... Then a + b = 2x, + x, _- = x. -. This completes the proof of the 
theorem. 

Corollary 2. If a + b < \+1> then N(a,b) < k for k > 1. 
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Figure 2 exhibits the periodicity for i fixed;: 

(2) N(a, a + i) = N(a + m i , a + [m + l ] i ) , 1 < i < a/2 
and the symmetry: 
(3) N(a, a + i) = N(a, 2a - i) , 1 < i < a - 1 . 

a = 1 1 
2 2 
3 2 2 
4 2 2 2 
5 2 3 3 2 
6 2 2 2 2 2 
7 2 3 3 3 3 2 
8 2 2 3 2 3 2 2 
9 2 3 2 3 3 2 3 2 
10 2 2 3 3 2 3 3 2 2 

11 2 3 3 3 3 3 3 3 3 2 

12 2 2 2 2 4 2 4 2 2 2 2 

13 2 3 3 3 4 3 3 4 3 3 3 2 

14 2 2 3 3 3 3 2 3 3 3 3 2 2 

15 2 3 2 3 2 3 3 3 3 2 3 2 3 2 

16 2 2 3 2 3 2 4 2 4 2 3 2 3 2 2 

17 2 3 3 3 4 3 4 3 3 4 3 4 3 3 2 2 

18 2 2 2 3 4 2 4 2 2 2 4 2 4 3 2 2 2 

19 2 3 3 3 3 3 4 4 3 3 4 4 3 3 3 3 3 2 

20 2 2 3 2 2 3 3 3 4 2 4 3 3 3 2 2 3 2 2 

21 2 3 2 3 3 3 2 4 3 3 3 3 4 2 3 3 3 2 3 2 

22 2 2 3 3 4 2 3 3 4 3 2 3 4 3 3 2 4 3 3 2 2 

23 2 3 3 3 4 3 4 3 4 4 3 3 4 4 3 4 3 4 3 3 3 2 

Figure 2 

N(a,b) for b = a + 1, •• • , 2a - 1 

I wish to acknowledge the assistance of Professor V. C. Harr i s in shorteningthe proofs. 
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