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Most of the questions concerning the length of the period of the recurr ing sequence ob-
tained by reducing a general Fibonacci sequence by a modulus m have been answered by D. 
D. Wall [ l ] . The problem discussed in this paper is to determine the number of ordered 
pai rs (a,b) with 0 ^ a < m and 0 ^ b < m that produce these various possible lengths. 

The resul ts that have been used in this study are summarized below. The proofs of 
these theorems are omitted here except for ' 'Theorem 12" whose proof in [1] is incorrect . 
The outline of a correc t proof of "Theorem 12n was proposed by D. D. Wall in answer to a 
let ter sent to him asking for clarification. 

SUMMARY OF KNOWN RESULTS 

Using the notation in [l] , let f denote the n term of the Fibonacci sequence where 
f0 = a, ij = b, and f - = f + f ... Let h = h(a,b,m) denote the length of the period of 
this sequence when it is reduced modulo m, taking least non-negative residues. When h 
does not depend on a and b we may write h = h(m) instead. The special Fibonacci s e -
quence which s ta r t s with the pair (0,1) will be denoted by {u } and its period when reduced 
modulo m by k(m). The sequence which s tar t s with (2,1) will be denoted by (v }. The 
let ter p will be used to denote a prime and e a positive integer. In studying the possible 
values of h(a ,b ,m) w e m a y a s s u m e , without any loss of generality, that (a,b,m) = 1. 

1. If 
e. / e. \ 

lip.1 and hfa, b, p . 1 J = h. 

then h(a ,b ,m) = LCM[h.] [ l , Theorem 2 ] . 
2. If t is the largest integer such that k(p ) = k(p) then k(pe) = p e ~ \ (p ) for e ^ t 

[ 1 , Theorem 5] . 
Remark. The proof of this theorem as given in [l] is ra ther incomplete. It is possible 

to give a complete proof by using induction on e as suggested, but a much neater proof for 
the case when p is an odd prime is given by Robinson [2] , by the use of matrix algebra. 

6+1 e e 
For p = 2, Robinson1 s proof that k(p ) is either k(p ) or pk(p ) still holds, and 

the proof that shows that if k (p e + 1 ) = pk(pe) , then k (p e + 2 ) = pk(p6 + ) is Still applicable 
for e > 1. The case p = 2 and e = 1 is verified by direct computations since we have 
k(2) = 3, k(22) = 6 , and k(23) = 12. 

In part icular , if k(p2) f k(p), we obtain k(p ) = p k(p). In [3] Mamangakis has 
shown that (1) if c and p are relatively prime and cp occurs in {u }, then k(p2) f k(p), 
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and (2) if c and p are relatively pr ime, e £ d, and u. = cp is the f irst multiple of p 
to occur in (u }, then k(p ) = k(p) if and only if u. ^ has the same order mod p and 
mod p e . For all p up to 10,000 it has been shown that k(p2) f k(p). However, it has not 
yet been proved that k(p2) = k(p) is impossible. 

3. If m > 2, then k(m) is even [ l , Theorem 4 ] . 
4. If (b2 - ab - a2, p e ) = 1, then h(pe) = k(pe) [ l , Corollary to Theorem 8] . 
5. If p E ±3 (mod 10), then h(pe) = k(pe) [ l , Theorem 8] . 
6. h(2e) = k(2e) [1, Theorem 9] . 
7. If b2 - ab - a2 ^ 0 (mod 5), then h(5e) = k(5e) ; and if b2 - ab - a2 = 0 (mod 5), 

then h(5e) = ( l /5)k(5e) [1, Theorem 9 ] . 
e e 

8. If m = p , p > 2, and if there is a pair (a,b) which gives h(a ,b ,p ) = 2t + 1, 
then k(pe) = 4t + 2 [ l , Theorem 10]. 

9. If m = p , p > 2, and if k(p ) = 4t + 2 then h(a ,b ,p ) = 2t + 1 for some pair 
(a,b) [1, Theorem 11]. 

10. If m = p , p > 2, p f- 5, and h is even, then h(p ) = k(p ) [ l , Theorem 12]. 
Proof. Since f, = u, . a + u .b , we have h h-1 h 

(1) fh - a = buh + a(uh_1 - 1) = 0 (mod p e ) ; 

(2) fh+1 - b = b (u h + 1 - 1) + auh = 0 (mod p e ) . 

Since we are assuming that (a ,b ,p ) = 1, considering a and b as the unknowns, the de-
terminant must be zero. Hence u2 - (u, , . - l)(u, _, - 1) = 0 (mod p ). But it is known 

, h h+1 h -1 , ^ 
that u2 - u , + 1 u , = (-1) " , and so u, . + u, = 1 + (-1) (mod p ). Since h is even 
and u, - = u, + u, - , this gives 2u, _1 + u, = 2 (mod p ) , or u, = 2(1 - u, ..) (mod 
p ). It has been shown that if b2 - ab - a2 ^ 0 (mod p) we obtain the unique solution u, = 0 
and u, = 1 (mod p ), and so h(p ) = k(p ). Next consider the cases for which 
b2 - ab - a2 = 0 (mod p). Since u, = 2(1 - u, _1) (mod p ), substituting in (1) we obtain 

2b(l - uh ) + a(uh - 1) = 0 (mod p e ) , or (2b - a)(l - i ^ ) = 0 (mod p e ) . 

We will show that (2b - a, p ) = 1. The condition b2 - ab - a2 = 0 (mod p) can be written 
in the equivalent form (2b - a)2 = 5a2 (mod p). Now if p|(2b - a), then p|5a2; but p ^ 5, 
hence p|a. Therefore p|2b, and since p > 2, p|b. Thus (a ,b ,p ) ^ 1 contrary to a s -
sumption. Hence p/f (2b - a), and so we may cancel 2b - a from the above congruence ob-
taining 1 - u, = 0 (mod p e ) , or u, = 1 (mod p e ) . Since u, = 2(1 - u, ) (mod pe),: 

this implies that u, = 0 (mod p ), and so again h(p ) = k(p ) . 
11. If h(a,b,p) = k(p), then h ( a , b , p e ) = k(pe) [ l , Corollary 2 to Theorem 12]. 
12. Let f(m) denote the smallest positive integer, n, for which u = 0 (mod m), 

and let p be an odd prime. If 2/f(p), then k(pe) = 4f(pe) [ 4 ] . 
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THE PROBLEM 

For any given modulus m, there are m2 possible ordered pairs in sequence. Of 
these m2 ordered pai rs we would like to determine the number of pairs corresponding to 
each of the various possible lengths for that modulus. For example, if m = 7 we obtain 

0, 0, • • • length 1 (1 pair) 

0, 1, 1, 2, 3, 55 1, 6, 0S 69 6, 5, 4 , 2 , 6, 1, 0, • • • length 16 (16 pairs) 

0, 2, 2, 4, 6, 3, 2, 59 0, 5, 5-, 3, 1, 4, 5, 2, 0, • • - length 16 (16 pairs) 

0, 3, 3, 6, 2, 1, 3, 45 0, 4 , 4, 1, 5, 6, 4 , 3, 0, • • • length 16 (16 pairs) 

Hence 1 pair produces a sequence of length 1 and 48 pairs produce sequences of length 16. 
Viewing these as infinite sequences extending to the right as well as to the left, some of 
these sequences become indistinguishable. Thus instead of number of pa i rs it is convenient 
to talk about number of distinct sequences of a given length. In the above example, there is 
1 distinct sequence of length 1 and there are 3 distinct sequences of length 16. 

Let n(h,m) denote the number of distinct sequences of length h when the sequence is 
reduced mod m. This will be abbreviated to n(h) when it is clear what modulus is used. 
Thus the problem is to determine the values of n(h) corresponding to the various possible 
values of h for any given modulus m. 

e Since the resul ts summarized from [1] hold when (a ,b ,p ) = 1, we must consider 
what happens when (a ,b ,p ) f 1. When m = p, there is only one pair , namely (0,0), 
with (a,b,p) f 1 and it produces a sequence of length 1. When m = p2, then sequences for 
which (a ,b ,p ) = 1 are all the sequences for mod p multiplied throughout by p. When 
m = p3, the sequences for which (a ,b ,p3) f 1 are all the sequences for mod p2 multiplied 
throughout by p. Thus, in general when m = p we can t race back all the sequences except 

e e—1 e—2 the one arising from (0,0) to pairs for mod p , p " , p " , - - - , p where the condition of 
being relatively prime holds. The pair (0,0) will always have length 1 no matter what the 
modulus is . 

We shall henceforth abbreviate k(p) as k. 
Theorem 1. Let m = p e where p = 2 or p = ±3 (mod 10). If k(p2) ^ k(p) then 

n(l) = 1 and 

. i. v p (p2 - 1) n(p k) = F , 

for i = 0, 1, • • • , e - 1. 
Proof. By 5 and 6, if p = 2 or p = ±3 (mod 10) and if ( a ,b ,p 6 ) = 1, then h(a ,b ,p G ) 

= k(p ). If (a ,b ,p ) f 1, then we still have h(a ,b ,p ) |k(p ). Since k(p ) = p " k, the 
possible values of h (a ,b ,p ) are 1, k, pk, p2k, • • • , p e " k. We know that there is always 
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one sequence of length 1, namely when a = 0 and b = 0. Thus n(l) = 1. We will show that 
e—1 e 

all of the n(p k) sequences come from cases where (a ,b ,p ) = 1. We know that the s e -
e e—1 

quences for which (a9b,p ) f 1 a re the same sequences as for mod p " multiplied 
throughout by p, and these sequences have the same lengths as the corresponding sequences 
for mod p "~ . Since none of the sequences for mod p " has a length greater than k(p ~ ) 

e—2 e e—1 
= p k, no sequence for which (a, b , p ) ^ 1 can have a length of p k. Moreover, all 
the sequences for which (a, b, p ') = 1 have lengths of p " k and so a re included in 
n t p 6 " 1 ^ . 

Since 2n(h.)-h. = m2 where h. are the different possible lengths, we must have 

e-1 

i + J2 n ( p i k ) • pi k = p2 e 

i=0 

and 

e-2 
i • XT* / ii \ ii 2e-2 
1 + 2_j nvP k) • p k = p 

i=0 

Subtracting we obtain 

and so 

n(p " k) • p " k = p (p2 - 1) 

n(pe-lk) = P ^ V - D . 

e—2 e—3 o 
Now since n(p " k), n(p k), ••• , n(p k) represent the numbers of the sequences 

for which (a, b , p ) ^ 1, they correspond to the sequences for mod p " . But for mod 
e—1 e—2 e~1 

p , the sequences that have lengths of p " k are those for which (a1, b ' , p ) = 1 e-2 where a = paf and b = pb!. The number of these sequences gives n(p k). Hence we may 
use the formula derived above and obtain 

t e-2. , p e - 2 ( p 2 - 1) 
n(p k) = £ £ '-

Thus in general for mod p we have 
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n(pik) = P V - D 

for i = 0, 1, • • • , e - 1. 
Since k(2) = 3 and k(22) f k(2) we have: 
Corollary. For mod 2 e , n(l) = 1 and n(3-21) = 21 for i = 0, 1, • • • , e - 1. 
Theorem 1?. Let m = p where p = ±3 (mod 10). If t is the largest integer such 

that k(pfc) = k(p) with t > 1, then (1) for e < t, n(l) = 1 and 

2e 
n(k) = P z - i , 

and (2) for e > t, n(l) = 1, 

n(k) = B ^ r = - i - , and n f p 1 " ^ = P 1 + t ~ V - D 

for i = t, • • • , e - 1. 
Proof. 
(1) For e < t, k(p ) = k(p) and so all the sequences except the (0,0) sequence 

have length k. Since 2h.n(h.) = p this means 

2e 

e-t 
(2) For e > t, the possible lengths are 1, k, pk, • • • , p k. Since all the lengths 

of the sequences for mod p can be identified as the lengths for mod p , p " , • • • , p , p° 
where (a, b , m) = 1, we have: 

For mod p°, n(l) = 1. 
For mod p , n(l) = 1 and n(k) = (p2 - l ) /k . 

t 2t 
For mod p , n(l) = 1 and n(k) = (p - l ) /k . 
For mod p t + 1 , n(l) = 1, n(k) = (p2 t - l ) /k , and n(pk) = ( p 2 t + 2 - p 2 t ) / p k = 

( p 2 t - 1 ( p 2 - l ) ) / k . 
For mod p t + 2 , n(l) = 1, n(k) = (p2 t - l ) /k , 

n(pk) 
2 t - l , 2 t\ 2t+4 2t+2 2 t / 9 ,v 

~ ( E L L J > a n d n ( p 2 k ) = £ ^ P . , P fc - 1) 
k p2k k 

P 

e 2t 
Therefore, for mod p , n(l) = 1, n(k) = (p - l ) /k , and 
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. , ( 1 i + t - 1 / 2 -.\ 
, l - t + 1 . v P (P^ - 1) , . , -

n(p k) = -— ' F —- for l = t, • • • , e - 1 . 

Theorem 2. If m = 5 e
5 then n(l) = 1, n(4) = 1, n(4-51) = 6-51"1 for i = 1, • • • , 

e - 1, and n(4°5 ) = 5 " . 
Proof, We always have n(l) = X* With the assumption that (a, b, 5 ) = 1 we know 

by 7 that if (b2 - ab - a2
5 5) = 1 then h(5e) = k (5 e ) , and if (b2 - ab - a2, 5) f 5 then 

h(5e) = ( l /5 )k(5 e ) . 
e 

It can be shown that the assumption (a, b , 5 ) = 1 is superfluous in the first case be-
cause if (a, b, 5 ) f X, then 5|a and 5|b; hence 5|(b2 - ab - a2) contradicting (b2 - ab -
a2, 5) = 1. Thus, if (b2 - ab - a2, 5) = 1, then (a, b, 5e) = 1. 

In generalj we know that there are p - p pai rs (a,b) with (a ,b ,p ) = 1. We 
2e 2e—2 wish to determine how many of these 5 - 5 pairs give (b2 - ab - a2, 5) = 5. This is 

equivalent to b2 - ab - a2 = 0 (mod 5), or (2a + b)2 = 5b2 (mod 5), or (2a + b) = 0 (mod 5).. 
e Hence b = -2a (mod 5), or b = 3a (mod 5). Thus If (a, b , 5 ) = 1 and 

(b2 - ab - a2, 5) = 5, 

e e—X e—X 
a can take 5 - 5 different values and corresponding to each value of a, b can have 5 
values. Therefore, there will be 5 " (5 - 5 " ) = 4.5 " such pairs (a,b). Since the 
total number of pairs (a,b) for which (a ,b ,5 ) = 1 is 5 - 5 ~ and all the cases for 
which (b2 - ab - a2, 5) = X ar ise from these, the number of pai rs (a,b) such that (b2 - ab -
a2, 5) = X is given by 5 - 5 ™ - 4=5 " = 4-5 e~~ . This is the number of pairs that 
produce sequences of length k(5 '). Since k = k(5) = 20, k(5e) = 5 e ~ k = 4-5e and so 

u _e* 4 . 5 2 6 " 1
 Re-X n(4-5 ) = ———- = 5 

4-5e 

We have 4*5 e~ pairs with (a, b, 5 ) = X producing sequences of length -|k(5 ) = 4-5 " . 
There are also the cases for which (a, b, 5 ) f X. But there a re the sequences for mod 

e—X e—X e—X 
5 multiplied throughout by 5. Since k(5 ) = 4-5 the number of pa i rs that produce 

e-X 2e-2 2(e-X)-X 
sequences of length 4-5 Is given by 4-5 +4-5 and so 

,A C e - L 4»5 + 4*5 n _e-2 
n(4-5 ) = — — — 1 — = 6-5 

4»5e*"1 

We have -|k(51+1) = k(5X) = 4-51 for i = X, 2, • • • , e - X and so 

5 

4 . 5 2 ( i + l ) -2 + 4 . 5 2 ( i + l ) -3 
n(4°5 ) = • — • — — — r — — — = 6 - 5 

4-51 
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for i = 1, 2, • • • , e - 1. In addition to these there are the pairs that produce sequences of 

I1 length ik(5) = 4. The number of such pai rs is 4-5 , where e = 1. Hence, 

n(4) = (4.5°)/4 = 1 . 

Theorem 3. Let m = p e where p = ±1 (mod 10). If k(p2) f k(p) then 
(1) If 4Ik, n(l) = 1 and 

for i = 0, 1, • • • , e - 1 and 
(2) if 4 |k5 n(l) = l , 

n(pik) = P, V Z J> 

n ( pik / 2) = 2fc>zJ> 

and 

n(pik) = (P - I H P ^ 1 + p1 - 1) 

for i = 0, 1, • • • , e - 1. 
Proof. By 3, k(p ) is even, and so it is either of the form 4t or of the form 4t + 2. 

e e e 
(1) If k(p ) = 4t, by 8, h(p ) cannot be odd; and if h is even then by 10, h(p ) = 

e i-* t* iP f—1 
k(p ). Thus on condition (a, b, p ) = 1, h(p ) = k(p ) = p k, and so the proof of 
Theorem 1 is applicable here. We also note that the condition 4|k(p ) is equivalent to that 

e . __ e-1 . , 0I^ e-1 of 4 |k since k(p ) = p " k and 2|p' 
(2) If k(pe) = 4t + 2, by 9 h(pe) = 2t + 1 for some (a,b). By 4 if (b2 - ab - a 2 ,p e ) 

= 1, then h(p ) = k(p ). Now consider (b2 - ab - a2, p ) ^ 1; if h(a, b , p ) is even, by 
10 h(a, b , p ) = k(p ); and if h(a, b, p ) is odd, by 8, h(a, b , p ) = 4k(p ). 

Let us first consider the case for mod p. To determine the number of pairs (a,b) 
for which (b2 - ab - a2, p) ^ 1, consider b2 - ab - a2 = 0 (mod p), or (2b - a)2 = 5a2 

(mod p). Since 5 is a quadratic residue of pr imes of this form, x2 = 5 (mod p) has two 
solutions ±c. Thus the above condition is equivalent to 2b - a = ±ca (mod p), or 

M a (mod p) 

or bt = r a and b2 = sa (mod p), where r = (1 + c)/2 and s = (1 - c)/2 (mod p). Note 
that r £ s (mod p) for this would imply c = 0 and hence c2 = 0 (mod p). 

To have (a, b, p) = 1, we must have (a, p) = 1 because if (a,p) ^ 1, then pja; 
but 

-M a (mod p) 

and so b s 0 (mod p) and p|b; hence (a9 b, p) ^ 1. Therefore for mod p there are p -
1 possible values of a that will give (a, b, p) = 1 and (b2 - ab - a2, p) f 1; and 
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corresponding to each value of a, there are two values of b. Hence, there a re 2(p - 1) 
pa i r s (a,b) with (a,b,p) = 1 and (b2 - ab - a2, p) ^ 1, We obtain: 

If a = 1, b-L = r and b2 = s (mod p) ; 
If a = 2, ht = 2r and b2 = 2s (mod p); 

If a = p - 1, b t = (p - l ) r and b2 = (p - l )s (mod p). 
It is c lear that no matter what a i s , for mod p, the pairs (a, ar) will all produce sequences 
of the same length as the pair ( l , r ) , and similarly the pai rs (a, as) will all produce s e -
quences of the same length as the pair (1, s). 

Now, we know that since k(p) = 4t + 2 there exist (a,b) such that h(a,b,p) = -^k(p) = 
2t + 1. But if there is one pair (a,b) satisfying this , there a re at leas t p - 1 pai rs (a,b) 
with h(a,b,p) = 2t + 1. We will show that there are only p - 1 such pa i rs . 

Without any loss of generality we may assume a to be 1. We will show that either 
( l , r ) or ( l , s) but not both, will produce a sequence of length 2t + 1 when reduced mod p. 
Now suppose that both ( l , r ) and ( l , s ) produce sequences of length 2t + 1. We have 

1, r , 1 + r , 1 + 2r , 2 + 3r , • • • , u .. + u r , • • • (mod p) ; 
n-1 n ^ 

1, s , 1 + s, 1 + 2s , 2 + 3s, ••• , u + u s , • • • (mod p) . 
n - 1 n v f/ 

Therefore, we must have u , + u , r = 1 and u ? , + u ? , - s = 1 (modp). Hence u , ( r - s ) 
= 0 (mod p). By 12, f(p) must be even for if f(p) is odd, then 4|k(p ). This gives 
uof+i ^ ° (mod p) for otherwise f (p) j(2t + 1) which is impossible. Hence we have r = s 
(mod p), and we have shown that this is impossible. Thus, the pai rs ( l , r ) and ( l , s ) can-
not both produce sequences of length 2t + 1. 

An alternative proof is the following. Since b2 - ab - a2 = 0 (mod p) we must have 
r2 - r - 1 = 0 (mod p), or 1 + r = r2 (mod p). Using the recurrence relation f = f _ + 
f 0 we may obtain r + r2 = r ( l + r) = r3 (mod p), r2 + r3 = r ( r + r2) = r4 (mod p), etc. n—A 
Thus the sequence 

1, r , 1 + r , 1 + 2r, 2 + 3r, •• • (mod p) 

may be written as 1, r , r2, r3 , r4, • • • (mod p). Similarly, the sequence 1, s, 1 + s, 1 + 
2s, 2 + 3 s , ••• (modp) may be written as 1, s, s2, s3, s4, ••• (modp). 

Therefore, the assumption that these two sequences have periods of length 2t + 1 when 
2t+l 2t+l 

reduced mod p , implies that r = 1 and s = 1 (modp). Multiplying these two 2t+l congruences we obtain (rs) = 1 (mod p). But 

r s = —" — = _i (mod p) 

9 f_j-l 
because c2 = 5 (mod p), and so (-1) = 1 (modp) which is impossible. Hence ( l , r ) 
and ( l , s ) cannot both produce sequences of length ^k(p) = 2t + 1. 
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Therefore of the 2(p - 1) pairs (a,b) for which (b2 - ab - a2, p) ^ 1 and (a,b,p) = 1, 
p - 1 pairs produce sequences of length |-k and the other p - 1 pairs produce sequences of 
length k. 

Since the total number of pairs (a,b) with (a,b,p) = 1 is given by p2 - 1, we can 
now find the number of pai rs (a,b) for which (a9b,p) = 1 and (b2 - ab - a2, p) = 1. We 
obtain (p2 - 1) - 2(p - 1) = (p - l )2 . All of these produce sequences of length k. Therefore 
for mod p we have 

•0) n(l) = 1, n ( ^ ) = 2 ( p _ ^ ) 

and 

n(k) = (P - » I <P - 1>2 = P(Pk- » 

We shall next consider the case for mod p . The condition (b2 - ab - a2, p ) ^ 1 is 
equivalent to (b2 - ab - a2, p) f 1. Therefore we must again have 

b - W a (mod p) 

e e e e—X 
We know that (a, b, p ) = 1 if and only if (a, p ) = 1. Hence there a re p - p possible e-1 values of a, and corresponding to each value of a there are 2p values of b. Thus 
there are 2p " (p - p " ) pairs (a,b) with (a ,b ,p ) = 1 and (b2 - ab - a2, p ) ^ 1„ 

e e—1 
If a = 1, hi = r + jp and b2 = s + jp (mod p ) where j = 0, 1, 2, • • • , p - 1. If 
a = 2, bt = 2r + jp and b2 = 2s + jp (mod p ), where j = 0, 1, 2, • • • , p " - 1. These 
are equivalent to bt = 2(r + jp) and b2 = 2(s + jp) (mod p ), where j = 0, 1, 2, •••,. 

e -1 -p - 1. 
Since for any a, the sequences (a, a(r + jp)) and (a, a(s + jp)) will all have the 

e-1 same length as (1, r + jp) and (1, s + jp), respectively, for j = 0, 1, • • • , p - 1, it 
e-1 is sufficient to consider the sequences (1, r + jp) and (1, s + jp) for j = 0, 1, • • • , p - 1. 

Since k(pe) = 4 t + 2, we know that for at least one value of j , at least one of (1, r + 
jp) and (1, s + jp) produces a sequence of length 2t + 1. Suppose for some value of j , 
h = h ( l , r + jp, p e ) = 2t + 1. We will show that then for any i where i is one of 0, 1, 2, 
. . . , p e ~ _ i , h ( l , s + ip3 p 6 ) ^ 2t + 1. Suppose for some i? 

h = h ( l , r + jp, p e ) = h ( l , s + ip, p e ) = J k = 2t + 1. 

We have 

1, r + jp, • • • , u n _ x + un(r + jp), • • • (mod p 6 ) ; 

1, s + ip, • • • , u n _ 1 + un(s + ip), • • • (mod p e ) ; 
and so 
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Uh-1 + U h ^ r + ^ ™ 1 ~ U h - 1 + Uh^S + ip^ ^ m ° d p 6 ^ ' 

o r u, ( r + jp) s u, (s + ip) (mod p ). Since by 12 u, ^ 0 (modp), we may cancel u, 
and obtain r + jp = s + ip (mod p ), or r = s (mod p) which is impossible. 

Hence if for some value of j s h( l + r + jp, p ) = 2t + 1 then for no value of i can 
h( l , s + ip, p ) be equal to 2t + 1. Similarly, if for some value of j , 

h ( l , s + jp, p e ) = 2t + 1, 

then for no value of i can h( l , r + ip, p ) be equal to 2t + 1. 
Next, we will show that only one value of j gives a length of 2t + 1. Suppose both 

11, r + jp) and (1, r + ip) produce sequences of length h = 2t + 1, where i and j a re two 
e-1 different numbers from 0, 1, • • • , p - 1. Therefore 

Uh-1 + U h ^ r + 3P) = ! = \_i + u
h ( r + *P) ( m o d PG)> 

or 
uh(r + jp) = u^(r + ip) (mod p e ) . 

Since by 12, u, ^ 0 (modp), we have r + jp = r + ip (modp ), or jp = ip (modp ), 
e-1 e-1 

o r j = i (mod p ) which is impossible. Therefore of the 2p values corresponding 
to each value of a, only one can produce a sequence of length 2t + 1. But there a re p -
p " possible values of a. Hence there are p - p or p " (p - 1) pairs (a,b) that 

. Q e—1 e e—1 e e—1 
produce sequences of length | k ( p ). The remaining 2p (p - p ) - (p - p ) or 
p " (p - l)(2p - 1) pairs (a,b) that have (a, b, p ) = 1 and (b2 - ab - a2, p ) f 1 

e 2e 2e—2 
produce sequences of length k(p ). Also since there are p - p pai rs (a,b) for which 
(a, b, p ) = 1, we have 

, 2e 2e-2x 0 e -1 / e e-lv (p - p ) - 2p (p - p ) 

or p (p - l)2 pairs with (b2 - ab - a2, p ) = 1. All of these produce sequences of length 
k(p ). In addition to these, there are the sequences for which (a, b , p ) ^ 1. Thus for 
mod p we have n(l) = 1, 

n ( p i k / 2 ) = P > - 1) = 2 ( P ^ 1 ) 
p ' k / 2 k 

and 

n(pik) = P'<P - W - » + p 2 1 ( P - » ' - <P - ^ + ^ - ^ (i = 0 , l , . . . , e - l ) . 
P k 

Theorem 3T. Let m = p where p = ±1 (mod 10) and let t be the largest integer 
such that k(p ) = k(p) with t > 1. 
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(1) if 41 k9 then (a) for e < t, n(l) = 1 and 

2e 
nfc) = P - ^ 

and (b) for e > t, n(l) = 1, 

2t -
m(k) = S^ZJ, , 

and 

n ( p i 4 + 1 k ) = p l + t - 1 [ P 2 - 1} for i = t, . . . . e - 1. 

and 

(2) if 4 |k , then (a) for e £ t, n(l) = 1, 

= 2(P6 - D 

/. v p (p - 1) n(k) = N F » — — i 

and (b) for e > t, n(l) = 1, 

•(f) ^ i) 

n(k) = p ( \ - 1} 

n ^ W V s = 2pt"XLP - 1} 

and 

n ( p i - t + i k ) = P U 1 ( P - 1HP1+1 + P1 - i) 

for i = t, • • • , m - 1. 
Proof. (1) Same as the proof for Theorem l f . 

e e 
(2) We have shown in Theorem 3 that if (a, b, p ) = 1, for mod p , 

e—1 A 6 
p (p - 1) pairs (a,b) produce sequences of length |-k(p ) and 

e - 1 , l W o e-1 lX , 2e-2, i x 2 p (p - l)(2p - 1) + p (p - i r 
or 

e - 1 / l W e , e-1 1X p (p - l)(p + p - 1) 
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pa i rs (a,b) produce sequences of length k(p ). Thus we have: 
For mod p°, n(l) = 1. 
For mod p, n(l) = 1, 

and 

k 
, 2 / 

(k) 

_ 2(p - 1) 
k 

_ P(P - 1) 
k 

For mod p2, n(l) = 1, 

• ( * ) - * ! 
H + 2p(p - 1) = 2(p2 - 1) 

k k k 

and 

n(k) - p ( p - 1} + P(P - D(P2 + P - 1) _ P2(p2 - 1) 

For mod p , n(l) = 1, 

*(t)-±£ 
t - 1 ' t 

(p - 1) _ 2(pI - 1) 
~ E k 

i=0 
and 

n(k) = v pi(p -l)(pi+1 + pi -1] = pt(pt - *> 
i=0 

For mod p , n(l) = 1;, 

-(0- 2(pt - 1) 
k 

P (p - 1) 
k 

2pt"1(p -

J 

i) 

n(k) 

n(pk/2) = ^ 

and 

t - 1 , 1X t+1 , t 
n(pk) = P " (P - DP + P - 1) 
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t+2 For mod p , n(l) = 15 

• ( 1 ) = * ^ . *>.&f±. . - 2 P (P - 1) (pk/2) k 

n ( p k ) = P " < P - D(Pk
t+1 + P* - 1) , n ( p V 2 ) = 2p"(p - 1) § 

and 
t - 1 , 1W t+2 , t+1 

Thus for e ̂  t, we have n(l) = 1, 

e-1 
(p - 1) = 2(pe - 1) » ( l ) = E ^ k 

i=0 

and 

e-1 

i=0 

n(k) = Y P1^ - D(P +P1 - 1) = Pe(p6 - 1) 

and for e > t we have n(l) = 1, 

n ( | ) = V _ ^ ^ n ( k ) = P ! ( P ^ ) n(pi-t+lk/2) = 2p^(p - 1) 

and 

n(p i- t + 1k) = P t - 1 (P - 1HP1+1 + P1 - 1) f o r i = t , • • • , e - 1 . 

Theorem 4. Let N(h,m) = h-n(h5m). If 

n e. 
m = n p.* , 

i=l 
then 

n e. 
n N(h., p . 1 ) 

n ( h > m > = S i z i — h — • 
LCM[h.]=h 

e. 
where h. = h(a5 b, p. ) . 
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n 

Proof. Consider the equivalent problem for which the modulus is of the form II m. 

where the m. are pairwise relatively pr ime. Suppose first that m = m^m^ and (m1,m2) ~ 
1. By 1, if h (a ,b ,mi ) = ht and h(a ,b ,m 2 ) = h2 then h(a, b, m ^ ) is the least com-
mon multiple of hj and h2. Also, by the Chinese Remainder Theorem, we know that each 
pair (a,b) (mod m ^ and each pair (c,d) (mod m2) gives r i se to a unique pair (e,f), 
(mod m ^ ) such that e = a, f = b (mod n ^ ) , and e = c, f = d (mod m 2 ) . B y l , 
h(e, f, m1m2) is the least common multiple of h(e, f, mA) and h(e, f, m 2 ) . But e = a and 
f = b (mod m.1) imply that h(e, f, m ^ = h(a, b , mA) = h l s and similarly h(e, f, m2) = h2;, 
and so h(e, f, niim2) is the least common multiple of hA and h2. 

Let [hi , h2 ] denote the least common multiple of hA and h2. We have seen that each 
pair of pai rs (a,b) (mod m t ) and (c,d) (mod m2) gives a unique pair (esf) (mod m1m2), 
of length h = [hl 3 h 2 ] . Therefore there are N(h1? mi)-N(h2, m2) such pairs (e,f) with 
length hi (mod m^) and length h2 (mod m2) . Now any pair (e,f) (mod Hiim2) with 
length h when reduced mod mi produces a sequence of length hi and when reduced mod 
m2 produces a sequence of length h2 such that [hi , h2] = h. Hence 

^ N(h1,m1).N(h2,m2) 
N(h,m1m2) = 2-* N(hi,mi)-N(h2,m2), and so n (h ,m 1 m 2 )= JL/ — K ' 

[hl5h2]=h [hi,h2]=h 

n 
By induction, this resul t is now easily extended to the case m = n m., where n > 2 , 

and all the m. are pairwise relatively pr ime. Thus we obtain 1 n 
„ n NOt^m.) 

n(h,m) = 2 ^ ^ L _ • 
LCM[h.]=h 

e. 
In part icular , if m. = p. for i = 1, • • • , n, we have 

n(h,m) = 2 ^ 

n e. 
n N(h., p.1) 

i=l 
h 

LCM[h.]=h 

These four theorems cover all possible values of m. Thus if k(p ) is known, the 
values of h(a, b, m) as well as n(h9m) can be determined. 

I would like to acknowledge the assistance Prof. D. Singmaster gave me with his c r i t -
ic isms and suggestions in putting this paper in its final form. 
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