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Most of the questions concerning the length of the period of the recurring sequence ob-
tained by reducing a general Fibonacci sequence by a modulus m have been answered by D.
D. Wall [1]. The problem discussed in this paper is to determine the number of ordered
pairs (a,b) with 0 =a <m and 0 =b <m that produce these various possible lengths.

The results that have been used in this study are summarized below. The proofs of
these theorems are omitted here except for "Theorem 12" whose proof in [1] is incorrect.
The outline of a correct proof of "Theorem 12" was proposed by D. D. Wall in answer to a

letter sent to him asking for clarification.

SUMMARY OF KNOWN RESULTS

Using the notation in [1], let fn denote the nth term of the Fibonacci sequence where
1 Let h = h(a,b,m) denote the length of the period of

this sequence when it is reduced modulo m, taking least non-negative residues. When h

fy =a, £y = b, and fn+1 = fn+fn_

does not depend on a and b we may write h = h(m) instead. The special Fibonacci se-
quence which starts with the pair (0,1) will be denoted by {un} and its period when reduced
modulo m by k(m). The sequence which starts with (2,1) will be denoted by {vn}. The
letter p will be used to denote a prime and e a positive integer. In studying the possible
values of h(a,b,m) we may assume, without any loss of generality, that (a,b,m) = 1.

1. If

e e
m =H'pi and h(a, b, p; ) = h,

then h(a,b,m) = LCM[hi] [1, Theorem 2].

2. If t is the largest integer such that k(pt) = k(p) then k(pe) = pe_tk(p) fore=t
[1, Theorem 5 ].

Remark. The proof of this theorem as given in [1] is rather incomplete. It is possible
to give a complete proof by using induction on e as suggested, but a much neater proof for
the case when p is an odd prime is given by Robinson [2], by the use of matrix algebra.

For p = 2, Robinson's proof that k(pe+1) is either k(pe) or pk(pe) still holds, and
the proof that shows that if k(pe+1) = pk(p®), then K(pe+2) = pk(pe+1) is still ‘applicable
for e > 1. Thecase p = 2 and e = 1 is verified by direct computations since we have
k(2) = 3, k(2?) = 6, and k(2%) = 12.

In particular, if k(p?) # k(p), we obtain k(pe) = penlk(p). In [3] Mamangakis has
shown that (1) if ¢ and p are relatively prime and cp occurs in {un}, then k(p?) # k(p),
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and (2) if ¢ and p are relatively prime, e < d, and uj = cpd is the first multiple of p

to occur in {un}, then k(pe) = k(p) if and only if u. . has the same order modp and

mod pe. For all p up to 10,000 it has been shown that 1k(pz) # k(p). However, it has not
yet been proved that k(p?) = k(p) is impossible.

3. If m > 2, then k(m) is even [1, Theorem 4].

4. If (b%-ab - a?, p®) =1, then h(p®) = k(p®) [1, Corollary to Theorem 8].

5. If p = +3 (mod 10), then h(p®) = k(®) [1, Theorem 8].

6. h2®) = k@®) [1, Theorem 9].

7. If b?-ab-a? £ 0 (mod5), then h(5%) = k(5°); and if b? - ab - a
then h(5°) = (1/5)k(5%) [1, Theorem 9].

8. If m = pe, p > 2, and if there is a pair (a,b) which gives h(a,b,pe) = 2t+1,
then k(®) = 4t+2 [1, Theorem 10].

9. If m = pe, p > 2, and if k(pe) = 4t + 2 then h(a,b,pe) = 2t +1 for some pair
(a,b) [1, Theorem 11].

10, If m = pe, p>2, p#5, and h is even, then h(pe) = k(pe) [1, Theorem 12].

Proof. Since fh = uh_la + uhb, we have

0 (mod 5),

(1) fh -a = buh + a(u 1) =0 (mod pe);

h-1 "~

(2) £

h+1_b = b(u

hil " 1) +au, = 0 (mod pe).

h

Since we are assuming that (a,b,pe) = 1, considering a and b as the unknowns, the de-
terminant must be zero. Hence u%l - (uh+1 -1) (uh_l -1) =0 (mod pe). But it is known
that u%l L L (-1)h'1, and so UpqtU =17 (-Bh (mod pe). Since h is even
agd W =t g this gives 20, ,tu =2 (mod p’), or u = 2(1 - uh-l) (mod
p_). Ithas been shown that if b% - ab - a2 # 0 (mod p) we obtain the unique solution w = 0
and o, = 1 (mod pe), and so h(pe) = k(pe). Next consider the cases for which
b%-ab - a% = 0 (mod p). Since W = 2(1 - uh-l) (mod pe), substituting in (1) we obtain

2b(1 - uh—l) + a(uh_1 -1 = 0 (mod p°), or (2b -a)1l -u .) = 0 (mod pe)

h-1

We will show that (2b - a, p°) = 1. The condition b? - ab - a?
in the equivalent form (2b - a)? = 5a% (mod p). Now if p|(2b - a), then p(5a2; but p # 5,

Il

0 (mod p) canbe written

hence pla. Therefore p|2b, and since p > 2, pr. Thus (a,b,pe) # 1 contrary to as-
sumption. Hence p* (2b - a), and so we may cancel 2b - a from the above congruence ob-
taining 1 - w =0 (mod pe), oru ., =1 (mod pe). Since u = 2(1 - uh—l) (mod pe),¢
this implies that w = 0 (mod pe), and so again h(pe) = k(pe) .
11. If h(a,b,p) = k(p), then h(a,b,pe) = k(pe) [1, Corollary 2 to Theorem 12].
12. Let f(m) denote the smallest positive integer, n, for which L 0 (mod m),

and let p be an odd prime. If 2/f(p), then k(%) = 4f(p®) [4].
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THE PROBLEM

For any given modulus m, there are m? possible ordered pairs in sequence. Of
these m? ordered pairs we would like to determine the number of pairs corresponding to
each of the various possible lengths for that modulus. For example, if m = 7 we obtain

0,0, «-- length 1 (1 pair)

0,1,1,2,3,5,1,6, 0,6,6,5,4,2,6,1,0, - -- length 16 (16 pairs)
0,2,2,4,6,3,2,5,0,5,5,3,1,4,5,2,0, -+ length 16 (16 pairs)
0, 3,3,6,2,1, 3,4,0,4,4,1,5,6,4,3,0, length 16 (16 pairs)

Hence 1 pair produces a sequence of length 1 and 48 pairs produce sequences of length 16.
Viewing these as infinite sequences extending to the right as well as to the left, some of
these sequences become indistinguishable. Thus instead of number of pairs it is convenient
to talk about number of distinct sequences of a given length. In the above example, there is
1 distinct sequence of length 1 and there are 3 distinct sequences of length 16.

Let n(h,m) denote the number of distinct sequences of length h when the sequence is
reduced mod m. This will be abbreviated to n(h) when it is clear what modulus is used.
Thus the problem is to determine the values of n(h) corresponding to the various possible
values of h for any given modulus m.

Since the results summarized from [1] hold when (a,b,pe) =1, we must consider
what happens when (a,b,pe) # 1. When m = p, there is only one pair, namely (0,0),
with (a,b,p) # 1 and it produces a sequence of length 1. When m = p?, then sequences for
which (a,b,pe) = 1 are all the sequences for mod p multiplied throughout by p. When
m = p3, the sequences for which (a,b,p?) # 1 are all the sequences for mod p? multiplied
throughout by p. Thus, in general when m = pe we can trace back all the sequences except
the one arising from (0,0) to pairsfor mod p°, pe’l, pe_z, -++, p where the condition of
being relatively prime holds. The pair (0,0) will always have length 1 no matter what the
modulus is.

We shall henceforth abbreviate k(p) as k.

Theorem 1. Let m = p° where p = 2 or p = #3 (mod 10). If k(p?) # k(p) then
n(l) = 1 and

. i 9
Il(plk) = p (P k_ 1)

for i=0,1, -+, e-1.

Proof. By 5and6,if p =2 or p = +3 (mod 10) and if (a,b,pe) =1, then h(a,b,pe)
= k(p®). If (a,b,p®) # 1, then we still have h(a,b,pe)ik(pe). Since k(p®) ——#pe'lk, the
possible values of h(a,b,pe) are 1, k, pk, p%k, -+, pe'lk. We know that there is always
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one sequence of length 1, namely when a = 0 and b = 0. Thus n(1) = 1. We will show that
all of the n(pe_lk) sequences come from cases where (a,b,pe) = 1. We know that the se-
quences for which (a,b,pe) # 1 are the same sequences as for mod pe_1 multiplied
throughout by p, and these sequences have the samelengths as the corresponding sequences

1 e-1

for mod pe_ . Since none of the sequences for mod p has alength greater than k(pe_l)

= pe_zk, no sequence for which (a, b, pe) # 1 can have a length of pe_lk. Moreover, all

the sequences for which (a, b, pe) = 1 have lengths of pe—1
e-1

np k).

Since En(hi)-hi = m? where hi are the different possible lengths, we must have

k and so are included in

e-1
1+ Z n(plk) . plk = pZe
i=0

and
e-2

1+ neR -k = P

i=

Subtracting we obtain

e-1

ne® e - p® 7k = p* P2 - 1)
and so
e-1 2
n(pe—lk) = p__ig——:!'.).
. e-2 e-3 0

Now since n(p~ k), n(p  “k), +-+, n(p k) represent the numbers of the sequences
for which (a, b, pe) # 1, they correspond to the sequences for mod pe—l. But for mod
pe_l, the sequences that have lengths of pe_zk are those for which (a', b', pe_l) = 1

where a = pa' and b = pb'. The number of these sequences gives n(pe_zk). Hence we may

use the formula derived above and obtain

n(pe—zk) - b (pz - 1)

Thus in general for mod pe we have
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. i
np'y) = 2B - 2 (pl: -1

for i=0,1, -, e-1.
Since k(2) = 3 and k(22) # k(2) we have:
Corollary. For mod 2e, n(l) = 1 and n(3-2i) = 2i for i=0,1, ---, e - 1.
Theorem 1'. Let m = pe where p = +3 (mod 10). If t is the largest integer such
that k(pt) = k(p) with t > 1, then (1) for e £ t, n(1) = 1 and

2e

n(k) = R._E‘_l_ ,
and (2) for e > t, n(1) = 1,
2t ) itt-1,
n(k) = E__'_l, and n(pl‘t"'lk) - b (p* - 1)
k k
for i=t¢, -, e-1.

Proof.

(1) For e ='t, k(pe) = k(p) and so all the sequences except the (0,0) sequence

have length k. Since Zhin(hi) = p2e this means

2e 1

nl) = ==

(2) For e > t, the possible lengths are 1, k, pk, ---, pe'tk. Since all the lengths

of the sequences for mod pe can be identified as the lengths for mod pe, pe_l, v, ps P
where (a, b, m) = 1, we have:

For mod p% n(1) = 1.

For mod p, n(1) =1 and nk) = - 1/k.

For mod pt, n(1) =1 and nk) = (pZt - 1)/k.

For mod pt+1, n(1) =1, nk) = (p2t - 1)/k, and nf(pk) = (p2t+2 - pZt)/pk =
@2 - 1) /k

2

For mod pt+ , n(1) =1, nk = (p2t- 1)/k,

2t-1

n(pk) = p—-—# and n(p%) = B

+ +
T L

p’k

Therefore, for mod pe, n(l) =1, nk) = (p2t - 1)/k, and
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i+t-1

. 2 _
n(pl—mk)zp__él';l) for i=t, -, e~-1.

Theorem 2. If m = 5%, then n(1) = 1, n@) = 1, n@.5") = 651
e-1, and n(4-5%) = 561,

Proof. We always have n(l) = 1. With the assumption that (a, b, 5e) =1 we know
by 7 that if (b® -ab - a2, 5) = 1 then h(5°) = k(5%), and if (b - ab-a?, 5) # 5 then
h(s°) = (1/5)k(5°) .

It can be shown that the assumption (a, b, 56) = 1 is superfluous in the first case be-
cause if (a, b, 5°) # 1, then 5|a and 5|b; hence 5|(b? - ab - a?) contradicting (b? - ab -
a?, 5) = 1. Thus, if (b?-ab-a?, 5) =1, then (a, b, 5°) = 1.

In general, we know that there are pZe _p2e-2 pairs (a,b) with (a,b,pe) =1. We

52e—2

for i=1,"-",

wish to determine how many of these 52€ _ pairs give (b% - ab - a%, 5) = 5. This is

equivalent to b? - ab - a2 = 0 (mod 5), or (2a + b)2 = 5b® (mod 5), or (2a +b) = 0 (mod 5).
Hence b = -2a (mod 5), or b = 3a (mod 5). Thus if (a, b, Se) =1 and

(% - ab - a%, 5) = 5,

a cantake 5° - 59"1 different values and corresponding to each value of a, b canhave 56—1

values. Therefore, there will be 5e-1(5e - 56"1) = 4-52e—2 such pairs (a,b). Since the

total number of pairs (a,b) for which (a,b,5e) =1 is 52'3 - 528_2 and all the cases for

which (b - ab - a2, 5) = 1 arise from these, the number of pairs (a,b) such that (b - ab -
a%, 5) = 1 is given by 52€ _ 52e-2 _ 4 g%e-1 _ 4-5%®71 This is the number of pairs that

produce sequences of length k(5%). Since k = k(5) = 20, k(%) = 551k = 4.5% and so

1l

Z2e-1
n@.5%) = 25 - 51

4-5°

We have 4-52672 pairs with (a, b, 5°) = 1 producing sequences of length %k(Se) = 4.5°71,
There are also the cases for which (a, b, Se) # 1. But there are the sequences for mod

581 multiplied throughout by 5. Since k(5e_1) = 4.5°71 the number of pairs that produce

e-1 2e-2 2(e-1)-1

sequences of length 4-:5 is given by 4-5 + 4.5 and so
2e-2 2e-3
n(4_5e—1) _ 4.5 ;41,5 - 6_5e—2
45
We have —;k(51+1) = k(5') = 4.5° for i= 1, 2, -+, e -1 and so

. 2(i+1)-2 2(i+1)-3
n(4-5l) _ 45 +i4-5 =65
4.5

i-1
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for i =1, 2, -+, e - 1. In addition to these there are the pairs that produce sequences of

length %k(5) = 4. The number of such pairs is 4-526_2, where e = 1. Hence,

n4) = 4.59)/4 = 1.

Theorem 3. Let m = p® where p = 1 (mod 10). If k(%) # k(p) then
(1) 1f 4jk, n@@) =1 and
. i 2
niple) = P (pk— 1)

for i=0,1, -, e-1 and
@ if 4/k, nQ) = 1,

np'k/2) - 2=
and

i .
11+p1—1)

for i=0,1, -+, e - 1.

Proof. By 3, k(pe) is even, and so it is either of the form 4t or of the form 4t + 2.

(1) If k@®) = 4t, by 8, h(®) cannot be odd; and if h is even then by 10, h(p®) =
k(pe). Thus on condition (a, b, pe) =1, h(pe) = k(pe) = pe-l
Theorem 1 is applicable here. We also note that the condition 4lk(pe) is equivalent to that
of 4|k since k(p®) = pe—lk and Z*pe_1 .

2 If k(p®) = 4t+2, by 9 h(p®) = 2t +1 for some (a,b). By4if (b% - ab - a2,p%)
=1, then h(®) = k(®). Now consider (b*- ab - a2, p®) # 1; if h(a, b, p°) is even, by
10 h(a, b, pe) =k(pe); and if h(a, b, pe) is odd, by 8, hfa, b, pe) = —;k(pe).

Let us first consider the case for mod p. To determine the number of pairs (a,b)
for which (b% - ab - a2%, p) # 1, consider b?-ab-2a%2 =0 (modp), or (2b-2a)® = 532

(mod p). Since 5 is a quadratic residue of primes of this form, x? = 5 (mod p) has two

k, and so the proof of

solutions #c. Thus the above condition is equivalent to 2b - a = *ca (mod p), or

b = (1:;(:)9. (mod p) ,

or b = ra and by = 82 (mod p), where r = (1+c¢)/2 and s = (1 - c)/2 (mod p). Note

|

Il

that v # s (mod p) for this would imply ¢ = 0 and hence ¢ = 0 (mod p).
To have (a, b, p) = 1, we must have (a, p) = 1 because if (a,p) # 1, then p[a;
but

b = (1§C>a (mod p) ,

and so b = 0 (mod p) and plb; hence (a, b, p) # 1. Therefore for mod p there are p —
1 possible values of a that will give (a, b, p) = 1 and (b* - ab - a2, p) + 1 and
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corresponding to each value of a, there are two values of b. Hence, there are 2(p - 1)
pairs (a,b) with (a,b,p) = 1 and (b® - ab - a?, p) # 1. We obtain:

Ifa=1, by=r and by = s (mod p};

If a =2, by =2r and by = 25 (mod p);

Ifa=s=p-1, by=@-r and by = (p-~-1s (mod p).
It is clearthat no matter what a is, for mod p, the pairs (a, ar) will all produce sequences
of the same length as the pair (1,r), and similarly the pairs (a, as) will all produce se-
quences of the same length ag the pair (1,s).

Now, we know that since kip) = 4t + 2 there exist (a,b) such that h(a,b,p) = —;k(p) =
2t + 1, But if there is one pair (a,b) satisfying this, there are atleast p - 1 pairs (a,b)
with h(a,b,p) = 2t + 1. We will show that there are only p - 1 such pairs.

Without any loss of generality we may assume a to be 1. We will show that either
(1,v) or (1,s) but not both, will produce a sequence of length 2t + 1 when reduced mod p.
Now suppose that both (1,r) and (1,s) produce sequences of length 2t + 1. We have

-+ . e e .

i, r,1+7r, 1+ 2r, 2 + 37, s g + u T, (mod p) ;
1,s,1+s,1+2s,2+3s,---,un_l+ u st (mod p) .

Therefore, we must have Uy ¥ g (T =1 and Uy, Uy 18 =1 (mod p). Hence u2t+1(r—s)

0 (mod p). By 12, f(p) must be even for if f(p) is odd, then 4lk(pe). This gives
Uyiiq # 0 (mod p) for otherwise f(p) l(zt + 1) which is impossible. Hence we have r = s
(mod p), and we have shown that this is impossible. Thus, the pairs (1,r) and (1,s) can-
not both produce sequences of length 2t + 1.

An alternative proof is the following. Since b?-ab -a? = 0 (mod p) we must have
»_r-1=0 (modp), or 1+r = r* (modp). Using the recurrence relation fn =f

+
n-1
f, 5 We may obtain r+ rr=r(l+r) s (modp), r*+1d =r{r+rd) =r! (modp), etc.
Thus the sequence

1, v, 1 +vr,1+2r,2 + 3r, -+« (mod p)

may be written as 1, r, r%, v3, r4, -+ (mod p). Similarly, the sequence 1, s, 1+s, 1+
2s, 2+3s, +++ (mod p) may be written as 1, s, s, &%, s?, -+ (mod p).

Therefore, the assumption that these two sequences have periods of length 2t + 1 when

reduced mod p, implies that thﬂ =1 and S2t+1 = 1 (mod p). Multiplying these two
congruences we obtain (rs)2t+1 = 1 (mod p). But
2
rs = I;C = -1 (mod p)

2t+1

because c?2 = 5 (mod p), andso (-1) = 1 (mod p) which is impossible. Hence (1,r)

and (1,s) cannot both produce sequences of length -%k(p) =2t + 1.
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Therefore of the 2(p - 1) pairs (a,b) for which (b? - ab - a2, p) # 1 and (a,b,p) = 1,
p - 1 pairs produce sequences of length %—k and the other p - 1 pairsproduce sequences of
length k.

‘ Since the total number of pairs (a,b) with (a,b,p) = 1 is given by p?-1, we can
now find the number of pairs (a,b) for which (a,b,p) =1 and (b2 -ab -a% p) = 1. We
obtain (p? - 1) -2(p - 1) = (p - D% All of these produce sequences of length k. Therefore

|
for mod p we have

n(l) = 1, n(—lzg) = Eipk—_l)

ag) = L= Dt @- 1 p oD

and

We shall next consider the case for mod p°. The condition (b? - ab - a2, %) #1 is

equivalent to (b% - ab - a%, p) # 1. Therefore we must again have
|

b = (i—;::)a (mod p) .

We know that (a, b, pe) = 1 if and only if {(a, pe) = 1, Hencethere are pe - pe_l possible

values of a, and corresponding to each value of a there are Zpe_l values of b. Thus

there are Zp"z’_l(pe - pe_l) pairs (a,b) with (a,b,p) = 1 and (b? - ab - a2, p°) # 1.
ifas1l, byj=r+jp and by =8 + jp (mod p®) where j=10,1, 2, ---, pe_l— 1. If
a =2, by =2r+jp and by = 2s + jp (mod pe), where j = 0, 1, 2, - -, pe—l— 1. These
hre equivalent to by = 2(r +jp) and by = 2(s + jp} (mod p%), where j = 0, 1,2, ---,
pe—l -1

Since for any a, the sequences (a, a(r +jp)) and (a, a(s + jp)) will all have the
game length as (1, r +jp) and (1, s +jp), respectively, for j =0, 1, ---, pe_1 -1, it
is sufficient to consider the sequences (1, r +jp) and (1, s+jp) for j =0, 1,---, pe_l - 1.

Since k(pe) = 4t + 2, we know that for at least one value of j, atleastone of (1, r+
jp) and (1, s +jp) produces a sequence of length 2t + 1. Suppose for some value of j,
fl = h(, r+ jp, pe) = 2t + 1. We will show that then for any i where i is one of 0, 1, 2,

oy pe_l -1, h(1, s +ip, p°) # 2t+ 1. Suppose for some i,

‘ h = h(1, r +jp, %) = h(1, s +ip, p) = Ik = 2t + 1.
We have

. . e
L v+ jp,=reyuy o +ule+jp), - (mod p);

1, s +ip, *=-, u + u (s + ip), * - (mod pe);

i n-1 n(
and so
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u +uh(r+jp)§15u

hel + uh(s + ip) (mod pe) ,

h-1
or uh(r +ijp) = u (s +ip) (mod pe). Since by 12 w £ 0 (modp), we may cancel u,
and obtain r +jp = s +ip (mod pe ), or r =8 (mod p) which is impossible.

Hence if for some value of j, h(1+r +jp, pe) = 2t +1 then for no value of i can
h(1, s +ip, pe) be equal to 2t + 1. Similarly, if for some value of j,

h(1, s + jp, p°) = 2t + 1,
then for no value of i can h(1, r +ip, pe) be equal to 2t + 1.

Next, we will show that only one value of j gives a length of 2t + 1. Suppose both

(1, r+jp) and (1, r +ip) produce sequences of length h = 2t + 1, where i and j are two

different numbers from 0, 1, :--, pe_l - 1. Therefore
N _ . e
oot uh(r +jp) = 1 = ot uh(r + ip) (mod p ),
or
. . e
uh(r +jp) = uh(r + ip) (mod p).

Since by 12, u, Z 0 (modp), we have r+ijp = r +ip (mod pe), or jp = ip (mod pe),
or j=1i (mod pe_l) which is impossible. Therefore of the Zpe'l values corresponding

to each value of a, only one can produce a sequence of length 2t + 1. But there are pe -

e-1 op pe'l(p—l) pairs (a,b) that

e-1

pe"1 possible values of a. Hence there are 10e -p
produce sequences of length %k(pe). The remaining Zpe_l(pe - pe—l) - (pe -p 7) or
pe—l(p - 1)(2pe—1 - 1) pairs (a,b) that have (a, b, p°) = 1 and (b®-ab-a? p°) # 1
produce sequences of length k(pe). Also since there are pZe - pze"2 pairs (a,b) for which
@, b, p°) = 1, we have

2 - - -
(0% - 027 - 2p°0® - p°

or pZe—z(p - 1)% pairs with (0% - ab - a2, p°) = 1. All of theseproduce sequences of length
k(pe). In addition to these, there are the sequences for which (a, b, pe) # 1. Thus for

mod pe we have n(1) = 1,

R i
n(plk/Z) _ b (:Il) - 1) = z(pk_ 1)
p k/2

and

. i i 21 R i+l i

nplg = 2R -D@p =D ¥p -1 _e-De *p B oo, e-1.
p k

Theorem 3'. Let m = p® where p = #1 (mod 10) and let t be the largest integer

such that k(p') = k(p) with t > 1.
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(1) if 4|k, then (a) for e < t, n(l) = 1 and
2e
nk) = p_k;l ,
and (b) for e >t, n(1) = 1,
2t 1
m(k) = p—_ﬁ_ s
and
) i+t-1,
np" g = B = ror g =,
(2) if 4/k, then (a) for e <t, n(1) = 1,
k) _ 20° - 1)
“(E) kK
and

pC(p® - 1)
nk) = -k

and (b) for e > t, n(1) = 1,

t—l(

n(pl—t+1k/2) _2p "(p-1

and
. t-1 i
pl—t+lk) _p

c, e - 1.

i+l
n( p - 1L(p +p

for i=t, .-+, m-1.
Proof. (1) Same as the proof for Theorem 1'.

(2) We have shown in Theorem 3 that if (a, b, pe)

pe—l(p - 1) pairs (a,b) produce sequences of length %—k(pe) and

e-1

e - peEptt -1+ p2e-z(p - 1)2

or

p° Mo - D0° +p* Tt - 1)

61

1, for mod pe,
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pairs (a,b) produce sequences of length k(pe). Thus we have:

For mod p?% n(l) = 1.

For mod p, n(1) = 1,

and
nk) = p(p - 1)
For mod p?, n(1l) = 1,
ok -2 -1 20(p -1 _ 20 -1
2 k k k
and
- _ 2 _ 2 (2 _
(k) = p(pk 1, pp 1)(£ +p-1) _ p (pk 1)
t -
For mod p’, n(l) = 1,
b1y t
kY _ 2p(p -1 _ 2 - 1)
o(5) - % ez, aion
i=0
and
t-1 . . .
i i+1 i t, t
- plp-D " +p -1 _pp -1
nk) K K
i=0
For mod pt+l, n(l) =1,
t
k 2(p° - 1)
n(i) K d
t, t
nk) = p(p - 1) ,
t-1
np/z) = 2 -1
and
t- t+1 t
n(pk) = 2 ‘o - 1)pk+ tp -1
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t+2

For mod p %, n(1) = 1,
t t, t t-1
kY _ 2(p” -1 -1 2 -
n(§> - B, aw - R, gy - oD
Ct-1 t+1 t t-1
n(pk) - p (p - 1)(pk +p - 1) , n(pzk/z) - 2p (é) - 1) ,
and
t-1 t+2 t+1
n(pl) = B = 1)(pk tp -1
Thus for e < t, we have n(1) = 1,
e-1 i e
k) o 2p (p - 1) _ 2(p° - 1)
n(z) Z K - K
i=0
and
e-1 . .
i i+1 i e, e
- P -1 ~+p -1 _pp -1)
k) = - 5
o - 3 He=2e] k
i=0
and for e > t we have n(1) = 1,
t t, t . t-1
k) _ 2(p" - 1) - p -1 i-t+1 _2p (p-1
n(—z-) — n(k) —r n(p k/Z) -k ’
and
. t-1 i+1 i
np Py =B @D D gp j-g e -1,
Theorem 4. Let N(t,m) = h.n(h,m). If
n e,
1
m = I p; >
i=1
then
n e
II N(hi’ pi )
_ i=1
n(h,m) = > =,
LCM[ b, ]=h

e.
where h, = ha, b, pil)
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n
Proof. Consider the equivalent problem for which the modulus is of the form II m,
i=1
where the m, are pairwise relatively prime. Suppose first that m = mm, and (m;,m;) =

1. By 1, if h(a,b,m;) = h; and h(a,b,my;) = hy then h(a, b, mym,) is the least com-
mon multiple of h; and hy;. Also, by the Chinese Remainder Theorem, we know that each
pair (a,b) (mod m;) and each pair (c,d) (mod m,) gives rise to a unique pair (e,f)
(mod mym,) such that e =a, f =b (mod m;), and e=c¢, f=d (mod mp). Byl,
h(e, f, mymy) is the least common multiple of h(e, f, m;) and h(e, f, my). But e = a and
f=b (mod m;) imply that h(e, f, m;) = h(a, b, my) =h;, andsimilarly h(e, f, my) = hy;
and so h(e, f, mym,) is the least common multiple of h; and h,.

Let [hy, hy] denote the least common multiple of h; and hy;. We have seen that each
pair of pairs (a,b) (mod m;) and (c,d) (mod m,) gives a unique pair (e,f) (mod m;ms,),
of length h = [hy, hy]. Therefore there are N(h;, m;)-N(hy, my) such pairs (e,f) with
length h; (mod m,;) and length h; (mod mjy). Now any pair (e,f) (mod mym,) with
length h when reduced mod m; produces a sequence of length h; and when reduced mod
m, produces a sequenceof length h, such that [hy, hy] = h. Hence
N(h;,m4)-N(hy, my) _

N(,mym,) = Z N(hy, my)-N(hy, my), and so n(h,mymy) = Z

h
[hy,hy]=h [hy,hy]=h
n
By induction, this result is now easily extended to the case m = 11 m,, where n>2,
and all the m, are pairwise relatively prime. Thus we obtain 1=1
n
Z iI=11NChi,mi)
n(th,m) = R re—
LCM[hi]=h
&
In particular, if m, = p; for i =1, -+, n, we have
n e
i N(hi, p;)
_ i=1
ahom =y, L
LCM[ h,]=h

i
These four theorems cover all possible values of m. Thus if k(pe) is known, the
values of h(a, b, m) as well as n(h,m) can be determined.
I would like to acknowledge the assistance Prof. D. Singmaster gave me with his crit—

icisms and suggestions in putting this paper in its final form.
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