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The triangular a r r ay of binomial coefficients is well known. Recently, Hoggatt and 
Hansel [2] have obtained a very surprising result involving these numbers. Stanton and 
Cowan [3] and Gupta [ l ] have generalized this triangular a r r ay to a tableau. In this paper, 
we generalize the results due to Hoggatt and Hansel. 

Let, for any positive integer m and any integer n, [ J =. 0 if either n > m or 
n < 0. Then we prove the following theorem. 

Theorem. The product of the six binomial coefficients spaced around ( J , viz. , 

(m - r i \ / m - r A / m \ / m + r 2 \ / m + r 2 \ / m \ 
n - r 2 / \ n / \ n " r 2 / \ n + r i / \ n / \ n + r i / 

where rt and r2 are positive integers , is a perfect integer square. 
Proof. The product of the six binomial coefficients is 

(m - r j ) ! (m - rA)! (m)! 
(n - r2)t(m - rt - n + r 2 ) ! (n)!(m - rt - n)\ ' (m - r 2 ) ! (m - n + r2)f. 

i2 r (m - r ^ ' . N K m + r 2 ) ! "j 
L (n - r2)t(m - rt - n + r2)t(n)!(m - ri - n)!(m - n + r2)!(n + r ^ t j 

Now, the product of binomial coefficients is an integer, since each binomial coefficient 
is an integer. And the square of a rational number is an integer if and only if the rational 
number is an integer. Hence the product is an integer square. 

It is interesting to note that 

( m \ / m - r i \ / m + r z \ / m - r i \ / m + r2\/ m \ 

n " r 2 / \ n / \ n + F l / = \ n " r 2 / \ n / \ n + r i / ' 

which is what really happens to make the product of six numbers a perfect square. 

Corollary l . If rt = r2, we get the product of six binomial coefficients which are 
equally spaced around ( m 1 • 

Corollary 2. If rt = r2 = 1, we get the product of six binomial coefficients that s u r -
round I J. This is the result of Hoggatt and Hansel [ 2 ] . Hence their result is a very 
special case of our general theorem. 
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By taking different values for rt and r2, we can obtain several configurations which 
yield products of binomial coefficients which are squares. In fact, one can build up a long 
serpentine configuration, or snowflake curves, as noted by Hoggatt and Hansel. 

Note that the theorem holds for generalized binomial coefficients (and hence for q-
binomials), and in part icular for the Fibonomial coefficients. 
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LETTER TO THE EDITOR 

Dear Editor: 
Here are two related problems for the Fibonacci Quarterly, based on some remarkable 

things discovered last week by Ellen Crawford (a student of mine). 
Problem 1. Prove that if m and n are any positive integers, there exists a solution 

x to the congruence 

F = m (modulo 3 ) . 

Solution. Let m be fixed: we shall show that it is possible to solve the simultaneous 

congruences 

F = m (modulo 3 ) 

(*) , 
F + F , - f 0 (modulo 3) . 

x x+1 ' 

This is clearly true for n = 1. It is also easy to prove by induction, using 

Y = F F + F F 
m+n m - 1 n m n+1 

(Continued on page 79.) 


