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1. INTRODUCTION 
In [2] , Webb and Pa rbe r ry study the divisibility properties of the Fibonacci polynomial 

sequence {f (x)} defined by the recursion 

fn+2(x) = xfn + 1(x) + fn(x); f0(x) = 0, ft(x) = 1. 

As one would expect, these polynomials possess many properties of the Fibonacci sequence 
which, of course, is just the integral sequence {f (1)}. However, a most surprising result 
is that f (x) is irreducible over the ring of integers if and only if p is a prime. In contrast, 
for the Fibonacci sequence, the condition that n be a prime is necessary but not sufficient 
for the primality of f (1) = F . For instance, F19 = 4181 = 37-113. 

In the present paper, we obtain a ser ies of resul ts including that of Webb and Parbe r ry 
for the more general but clearly related sequence {u (x,y)} defined by the recursion 

un + 2(x ,y) = xun + 1(x,y) + y u n ( x , y ) ; u0(x,y) = 0, ut(x,y) = 1. 

The first few terms of the sequence are as shown in the following table: 

n 

0 

1 

2 

3 

4 

5 

6 

7 

un(x,y) 

0 

1 

x 

x2 + y 

x3 + 2xy 

x4 + 3x2y + y2 

x5 + 4x3y + Sxy2 

x6 + 5x4y + 6x2y2 + y3 

8 x7 + 6x5y + 10x3y2 + 4XV3 

113 
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The basic fact that we will need is that Z [ x , y ] , the ring of polynomials over the inte-
ge r s , is a unique factorization domain. Thus, the greatest common divisor of two elements 
in Z [ x , y ] is (essentially uniquely) defined. 

Useful Property A: if a,j3, and y a re in Z[x ,y] and y | afi with y i rreducible, 
then y\a or y|/3. 

For simplicity, we will frequently use u in place of u (x,y) and will let 

/ x x + N/ x2 + 4y a = a(x,y) = g * 

and 

o ot \ x - \/x2 + 4y P = j3(x,y) = ~ * 

2. BASIC PROPERTIES OF THE SEQUENCE 

Again, as one would expect., many propert ies of the Fibonacci sequence hold for the 
present sequence. In particular, the following two results are entirely expected and are 
easily proved by induction. 

Theorem 1. For n ^ 0, 

u = — g— 
n a - jS 

Theorem 2. For m ^ 0 and n ^ 0, 

u , ,_. = u 1 1 u J 1 + y u u m+n+1 m+1 n+1 J m n 

The next result that one would expect is that (u , u + - ) = 1 for n ^ 0. To obtain 
this we first prove the following lemma. 

Lemma 3. For n > 0, (y, u ) = 1. 
Proof. The assert ion is clearly true for n = 1 since \xt = 1. Assume that it is true 

for any fixed integer k ^ 1. Then, since 

V i = x u k + y \ - i • 

the assertion is also true for n = k + 1, and hence for all n ^ 1 as claimed. 
We can now prove 
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Theorem 4. For n ^ 0 , (u , u , - ) = 1. N n n + 1 ' 
Proof. Again the result is trivially true for n = 0 and n = 1 since u0 = 0, % = 1, 

and u2 = x. Assume that it is true for n = k - 1 where k is any fixed integer, k ;> 2, and 
let d(x,y) = (u,, u, - ). Since 

V i = x \ + y \ - i • 

this implies that d(x,y) | u. -y. But (d(x,y), y) = 1 by Lemma 3 and so d(x,y) | u, . 
But then d(x,y) | 1 since (u, , u, ) = 1 and the desired result holds for all n ^ 0 as 
claimed. 

Lemma 5. For n ^ 0, 

r(n-l)/2] 
u (x, y) 

n-lJ/2] 
X ^ / n - i - 1 \ n -2 i - l i 

Proof. We define the empty sum to be zero, so the resul t holds for n = 0. For n = 1, 
the sum reduces to the single te rm 

0) xuyu = 1 = ut 

Assume that the claim is true for n = k - 1 and n = k, where k ^ 1 is fixed. Then 

Vi = x \ + yVi 

[ (k - l ) /2 ] v [0^2)/2] 

= v (k -1 - * )xk-2y + 2 (k" i'2 )x k"2 i -v+ 1 

i=0 ^ ' i=0 V ' 

[ ( k - l ) ^ ] , . |V2l 

• E (k-;- l)x
t-2v + | ; ( t - 1 i - 1

i ) , k - v 
[k/2] 
^ * / k - i \ k-2i i 

i=0 x ' 

Thus, the result holds for n = k + 1 and hence also for all n ^ 0 as claimed. 
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3. THE PRINCIPAL THEOREMS 

Theorem 6. For m ^ 2, u u if and only if m n. 
—; ' m ' n J ' Proof. Clearly u u . Now suppose that u u. where k ^ 1 is fixed. Then, — J m ' m ^ m ' km 

using Theorem 2, 

(k+l)m km+m 

= u. u M + yu. - u km m+1 J km-1 m 

But, since u | u, by the induction assumption, this clearly implies that u | u,, ^ . 
Thus, u u if m n. m ' n ' 

Now suppose that m ^ 2 and that u | u . If m/jn, then there exist integers q and 
r with 0 < r < m, such that n = mq + r . Again by Theorem 2, we have that 

u = u 
n mq+r 

= u ,., u + yu u n . mq+1 r J mq r - 1 

Since u u by the first part of the proof, this implies that u u , _. u . But, since m i mq J * F F m ' mq+1 r 
(u , u - ) = 1 by Theorem 4, this implies that u | u and this is impossible, since 

H 4 I 

u is of lower degree than u in x. Therefore, r = 0 and m|n and the proof is complete. 
Theorem 7. For m ^ 0, n ^ 0, (u , u ) = \i/ x. m n (m,n) 
Proof. Let d = d(x,y) = (u , u ). Then it is immediate from Theorem 6 that 

U(m,n) ' 
Now, it is well known that there exist integers r and s with, say, r > 0 and s < 0, 

such that 

(m,n) = r m + sn . 

Thus, by Theorem 2, 

rm (m,n)+(-s)n 

1/ v U , - -r y u / \ -, U 
(m,n) -sn+1 J (m,n) - l -sn 

But then d u and d u by Theorem 6 and so d u, xu ,- . But, (d, u ,-, )= 
1 - sn ' rm J ' (m,n) -sn+1 -sn+1 

1 by Theorem 4, and so d | u, \ by Useful Property A from Section 1. Thus, d = 
u, x as claimed. (m,n) 
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Theorem 8. The polynomial un = u (x,y) is irreducible over the rational field Q if 
and only if n is a prime. 

Proofo From Lemma 5, if we replace y by y2 we have 

un(x,y*) = ] > ] ( n " J " X) *n-2U1y2i 

which is clearly homogeneous of degree n - 1. Now it is well known (see, for example, [ l , 
p. 376, problem 5]) that a homogeneous polynomial f (x, y) over a field F is irreducible if 
and only if the corresponding polynomial f (x, 1) is irreducible over F. Since u (x, 1) is 
irreducible by Theorem 1 of [2] , it follows that u (x,y2) and hence also u (x,y) is i r redu-
cible over the rational field and thus is irreducible over the integers. 

4. SOME ADDITIONAL THEOREMS 

For the Fibonacci sequence { F } , for any nonzero integer r there always exists a 
positive integer m such that r | F . Also, if m is the least positive integer such that 
r I F , then r | F if and only if m|n. It is natural to seek the analogous results for the 
sequence of Fibonacci polynomials {f (x)} considered by Webb and Parber ry and the gener-
alized sequence {u (x,y)} considered here. In a sense, the first problem is solved by Webb 
and Pa rbe r ry for the sequence of Fibonacci polynomials, since they give explicitly the roots 
of each such polynomial. However, it is still not clear exactly which polynomials r(x) pos-
sess the derived property. On the other hand, it is immediate that the first result mentioned 
above does not hold for all polynomials r(x). For example, if c is positive, no linear fac-
tor x - c can divide any f (x) since this would imply that f (c) = 0, and this is impossible 
since f (x) has only positive coefficients. 

Along these l ines, we offer the following theorems which, among other things, show 
that the second property mentioned above does hold without change for u (x,y) and hence 
also for f (x). We give this result first. 

Theorem 9. Let r = r(x, y) be any polynomial in x and y. If there exists a least 
positive integer m such that r | u , then r | u if and only if m | n. 

Proof. By Theorem 6, if mjn , then u | u . Therefore, if r | u we have by 
transitivity that r | u . Now suppose that r | u and yet m |n . Then there exist integers 
q and s with 0 < s < m such that n = mq + s. Therefore, by Theorem 2, 

u = u n mq+s 
= u ,., u + • yu u _. . mq+1 s J mq s-1 

Since r u and r u , it follows that r u ,., u . But (u , u ,_,) = ! and this 1 mq i n ' ! mq+1 s mq mq+1 
implies that r | u . But this violates the minimality condition on m and so the proof is 
complete. 
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Theorem 10. For n ^ 2, 

n'1 / kir \ 
un(x,y) = n i x - 2 W y c o s — J 

Proof. From the proof of Theorem 8, it follows that 

Vx.y2) = y n - \ f f. A = yn"lf
nm 

where f (x) is the n Fibonacci polynomial mentioned above. Thus, 

un(x,y) = y ( n _ 1 ) / 2 f n ( x / ^ 7 ) 

and it follows from [2, page 462] that 

f (x/ -Jy) = " n (-5_ - 2i cos î L ) 
k=i v ^ n J 

This, with the preceding equation, immediately yields the desired result. 
Corollary 10. For n ^ 2, n even, 

and, for n odd, 

(n-2)/2 / k \ 
u (x,y) = x II I x2 + 4y cos2 — I 

k=i \ n / 

( n " l ) / 2 / kTT \ 
u (x,y) = n ( x2 + 4ycos 2 — J 

n k=l \ n / 

Proof. This is an immediate consequence of Theorem 10, since, for 1 ^ k < n / 2 , 

kn (n - k)77 
cos — = - cos - — 

n n 
It is clear from the preceding theorems that there is a precise correspondence between 

the polynomial factors of u (x,y) and those of u (x, 1) = f (x). Thus, it suffices to consider 
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only those of f (x). Also, it is clear that, except for the factor x, the only polynomial fac-
tors of f (x) with integral coefficients contain only even powers of x. While we are not able 
to say in every case which even polynomials are factors of some f (x) we offer the following 
partial resul ts . 

Theorem 11. 

(i) x J f (x) if and only if n is even. 

(ii) (x2 + 1) | f (x) if and only if 3 | n . 

(iii) (x2 + 2) | f (x) if and only if 4 | n. 

(iv) (x2 + 3) |f (x) if and only if 6 |n. 

(v) (x2 + c)|f (x) if c / 1, 2, or 3 and c is an integer. 

Proof. Since, except for x only, all polynomials with integral coefficients dividing 
any f (x) must be even, the results (i) through (iv) all follow from Theorem 9 with y = 1. 
One has only to observe that f2(x) is the first Fibonacci polynomial divisible by x, that 
f3(x) is the first Fibonacci polynomial divisible by x2 + 1, and so on. Pa r t (v) follows from 
the fact that 1 < 4 cos2 a < 4 for an a in the interval (0, TT/2). 

Theorem 12. Let m be a positive integer and let N(m) denote the number of even 
polynomials of degree 2m and with integral coefficients which divide at least one (and hence 
infinitely many) members of the sequence {f (x)}. Then 

N(m) < n I r 1 4k 

m 
Proof. Let f(x) be any polynomial counted by N(m). It follows from Corollary 10 with 

y = 1 that 

n/ x 2m , 2m-2 , , 2 . 
f(x) = x + a

m _ i x " ' a i x ao 

m 
= n (x2 + a.) 

3=1 J 

where a. = 4 cos2 j3. with 0 < |3. < TT/2 for each j . Therefore, 0 < a < 4 for each j . 

Since a k is the k elementary symmetric function of the tf.rs, it follows that 

0 < a < 
m-k (m

ty 
and hence that 
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N(m) < n f r 1 4k £(") 
as claimed. 

Of course, the estimate in Theorem 12 is exceedingly crude and can certainly be im-
proved. It is probably too much to expect that we will ever know the exact value of N(m) 
for every m. 

Our final theorem shows that with but one added condition the generalization to u (a,b) 
of the first result mentioned in this section is valid. 

Theorem 13. Let r be a positive integer with (r,b) = 1. Then there exists m such 
that r u (a,b). 1 m 

Proof. Consider the sequence u (a,b) modulo r. Since there exist precisely r2 

distinct ordered pairs (c,d) modulo r , it is clear that the set of ordered pairs 

{(u0(a,b), u^a .b)) , (u^a.b) , u2(a,b)), • • • , (u 2<a,b), u r 2 + 1(a ,b))} 

must contain at least two identical pairs modulo r. That i s , there exist s and t with 
0 < s < t ^ r2 such that 

and 

But 

and 

and this implies that 

u (a,b) = u,(a,b) (mod r) s z 

u (a,b) = u t + 1 (a ,b) (mod r) 

bus_3(a,b) = u g + 1 (a ,b) - aug(a,b) 

bu, 1(a,b) = u, - (a,b) - au,(a,b) 

bu (a,b) = bu, ..(a,b) (mod r) 

Since (r,b) = 1, this yields 
u 1(a ,b) = ut_x(a,b) (mod r) . 

Applying this argument repeatedly, we finally obtain 

0 = u (a,b) = u, (a,b) (mod r) 
s -s t - s 

so that r uf (a,b) and the proof is complete. 
' C—S 
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