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1. INTRODUCTION 

Consider a set of (n + 1) vertices of a nonoriented graph with vertices 1, 2, —, n adjacent to vertex (n + 1) and 
with vertex / adjacent to vertex (i + 1) for / < / < / ? - /. The graph described is called a sector graph herein. If 
the first n vertices are equi spaced in clockwise ascending order on the circumference of a circle with the (n + l)st 

vertex at the center, the geometry justifies the choice of name. 
If the first and nth vertices were made adjacent, the result would be the well known wheel*, Wn+i described by 

Harary [1 ] . For this reason, the lucidly descriptive terminology of Wn+j is applicable to a sector graph as well. 
Vertex (n + 1) is a huh vertex with spokes radiating outward to the n rim vertices which are adjacent by virtue of 
rim edges. Multiple spokes and/or rim edges are admissible. 

The designation used herein for a sector graph with n rim vertices is Sn followed in parentheses by spoke and 
rim edge multiplicity information. (In particular, rim edge position / is between vertices / and (/'+ 1)« This would 
also specify the position of sector L) Thus, the designation S8(f(2), 6(3), [J](2)) would describe a sectorgraph 
of nine vertices total having double spokes in the first spoke position, triple spokes in the sixth spoke position, and 
double rim edges in the third rim edge position. A simple sector graph would only require the designation Sn. The 
same terminology applies to wheels after a rim vertex is designated as vertex 1. An example is given in Figure 1. Tha 

Rim vertex 

Hub 

Rim edge position 
or Sector 

Spoke position 

© 
Figure 1 Example of SJK2), 6(3), 31(3)) 

number of trees is indicated by prefixing a T. Thus, TSn is the number of trees in a simple sector graph. (Unless 
otherwise stated, trees will refer to spanning trees.) 

*The subscript for the whee! customarily denotes the total number of vertices including the hub. The subscript n + 1 
is used here to retain identif ication wi th the n r im vertices. 
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2. THE COUNT OF TSn(1(2), n(2)) AND A BASIC DETERMINANT 

If a graph has some measure of symmetry, an algebraic approach to counting of trees is often feasible. If one mw 
of the incidence matrix A of the graph is suppressed to obtain the reduced incidence matrix An (of rank n), it is 
known [2] that the number of trees is given by det (AnA

l
n), where t indicates the transpose operation In the case 

of Sn(1(2), n(2)), suppressing the hub vertex row yields 

(1) det(AnA
f
n) = TSn(1(2),n(2)) 
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nX n 

The determinant an of (1) is basic to succeeding work. 
The recurrence realtion from (1) is easily found to be 

(2) 

whose solution is [3] 

(3) 

an - 3an„ i - an_2 

^fii^Y'-M""] 
Physically, (3) is valid for n > 2. However, ag- 1, a-j = 3 are consistent mathematically. The resulting numerical 
sequence of tree counts is 

(4) 1, 3,8,21 55, 144, - (n = 0, 1,2,3,4,5,-). 

It is evident that (4) gives alternate numbers of the Fibonacci sequence 

(5) F7, F2, F3, F4, F5, F6, •• - 1, 1,2, 3, 5, 8, •• . 

Upon comparing (5) with (4), it is seen that 

(6) an = TSn(U2),n(2)) = F2n+2 • 

This result is not surprising, of course, since it is well known [4] that electrical ladder networks have graphs of the 
sector type and immittance calculations on unit element ladders involve tree-derived numerators and denominators 
of Fibonacci numbers. 

Application of the Z-Transform [5] to (2), results in 

z2a0 + z(a7 -3ap) 

z2-3z+1 

By dividing the numerator of (7) by the denominator, the values of an are found as coefficients of 1/z11'. By setting 
ao= h a^3, 

z2 

(7) Z(an) 

(8) Z(an) 
z2-3z+1 

is found as the generating function in powers of 1/z of the sequence (4). 

3. THE COUNT OF TSn(1(2)) 

Next, consider TSn(1(2)) (by symmetry, TSn(n(2)L Det (AnA*n) isthe same as that of (DexceptthefirstSon 
the main diagonal is replaced by 2. Thus, in terms of an and through the use of (2) and (6), 

(9) TSn(1(2» = 2an-1-an-2 = an~
an-1 = F2n+2~ F2n = F2n+1 
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The Fibonacci numbers not in (4) satisfy the same recurrence relation (2) as those in (4). Use of new initial condi-
tions with (2), say, an = 5 for n = 2 and an= 13 for n = 3 yield 

(10) ^'i^M'-i^M^^ The resulting sequence of tree count numbers is 

(11) 1,2,5,13,34,89, (n = 0, 1,2,3,4,5, - ) , 

where physical validity applies for n >2. 
By letting ao = 1, a-j = 2 in (7), the generating function for the sequence (11) becomes 

(12) Z(TSn(1(2» z2-z 

z2-3z+1 

4. THE COUNT OF TSn 

In Sn, the degree of rim vertices / and n is two. Hence, the det (AnAn) for Sn is the same as (1) except that 
the 3's in the (1,1) and (n,n) positions are replaced by 2's. There results 

(13) TSn = 

2-10 
-1\ 

an-2 

0\ 
Oi 
OOO 

0 0 0 
0 
0 

0 
-1 

0 - 1 2 

n x n 

4an-2~4an-3 + an-4 = an-1 = ^2n • 

This means that 

(14) Sn.1(1(2), n- 1(2)) = ^ f a j ^ l \ n - l h z J s \ " \ TSn = TSn 

An index shift by one can be accomplished in (8) by multiplication by 1/z. Hence, the generating function for 
TSn becomes 

(15) Z(TSn) 
z2 -3z+ 1 

In terms oi sectors, the simple sector graph of k sectors has the tree count given by (6) with n replaced by k. 

5. EXTENSION TO TWn+1 

In Sn, by additionally making rim vertices / and n simply adjacent, the simple wheel Wn+i is obtained. 
Det(AnAn) is the same as (1) except that -1's replace ^s in the (1,n) and (n,1) positions. There results 

-1\ 

(16) TW, fn+1 

0 
0 

an-1 
0 

-1 
-10 0 ... 0 - 1 3 

- 3an-1-2an-2-2 = an-an-

= _3_ 
s/5 [(3-¥-)"-(3-¥)"- 2sj5 

3 ~ F2n+2-F2n-2-2-
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6. COUNT OF TREES WHICH INCLUDE INDIVIDUAL SPOKES OR RIM EDGES 

One way to find the number of trees which contain a particular graph edge is to coalesce the vertices of the edge 
and count the trees of the vertex-reduced graph, the count being the desired number of trees in the unreduced graph 
[6] containing the edge. The self loop into which the edge degenerates can be disregarded for tree counting. 

If a connected graph is separable, the number of trees is equal to the product of the trees of the separable sub-
graphs. When removal of a graph edge produces two separable but connected components, the difference between 
the product tree count and the number of trees of the original graph provides an additional way of finding the num-
ber of trees containing a particular graph edge. A few easily extended illustrative examples follow. 

COUNT OF TREES WITH A GIVEN SPOKE. Consider the hth spoke of Sn. By coalescing vertex h with 
hub vertex, two edge-disjoint subgraphs appear so that the vertex-reduced graph is separable with the hub vertex be-
ing a cut vertex. Each subgraph is a sector graph having a double end spoke. One subgraph has (h - 1) vertices and 
the other has (n - h) vertices. Through use of (9) and the product rule for separable graphs, it is seen that the num-
ber of trees of Sn which contain spoke h is 

(17) Th-i(U2)) • Tn,h(1(2)) = F2h-i • F2n-2h+l. (1 <« <n) r 

Consider any spoke of Wn. Coalescing the rim vertex to the hub yields Sn.j (1(2), n - 1(2)) which, by (6), has 

(18) TSn.1(1(2)/n-1(2)) = F2n 

trees. Thus, any spoke of Wn is in F2n trees. 
COUNT OF TREES WITH A GIVEN RIM EDGE. Let rim edge k be the edge of Sn which is incident with rim 

vertices k and (k + 1). Removal of rim edge k reduces Sn to a separable graph having the hub vertex as the cut 
vertex. The subgraphs are the sector graphs Sk and Sn-k. They are 

(19) TSk-TSn_k = F2k.F2n_2k 

trees in the reduced graph. Since Sn has F2ri trees, the number of trees of Sn in which rim edge k appears is 

(20) TSn - TSk • TSn_k = F2n - F2k • F2n.2k . 

If any rim section is removed from Wn, Sn results. Therefore, any rim selection of Wn must be in 

(21) TWn~TSn = F2n+2-F2n_2-F2n-2 

trees. 
7. GRAPHS WITH MULTIPLE SPOKES AND RIM EDGES 

TREE COUNT WITH MULTIPLE SPOKES. Suppose that the number of spokes in position h of Sn is increased 
to / Since a spoke cannot be in a tree with any other spoke in the same position (resulting loop could not be part 
of a tree), the number of trees would be (with the aid of (13) and (17)), 

(22) TSn + (j- DTh^(1(2)) • T^h(1(2)) = F2n + (j- 1)F2h-i • F2„-2h+v (1<h<n). 

Correspondingly, the increase of the number of spokes in any position of Wn+i results in a total of trees given by 
(see (16) and (18)) 
(23) TWn + (j- 1)TSn-7(1(2),n-1(2)) = F2n+2- F2n_2 + (j- 1)F2n-2. 

TREE COUNT WITH MULTIPLE RIM EDGES. If the number of rim edges for sector k of Sn is increased to j, 
the number of trees would become (with the aid of (13) and (20)), 

(24) jTSn - (j- 1)TSk. TS^k = jF2n - (j- 1)F2k • F2n.2k . 

Also, rf the numb&r of rim edges for any given sector of Wn+f were increased to j, the number of trees becomes (see 
(16) and (21)) 

(25) JTWn+1-(j-1)TSn=j(F2n+2-F2n„2-F2n-2)+F2n. 

Extensions to additional multiple edges are available only for the trying. One obvious use for the tree count formu-
las is the evaluation in general Fibonacci terms special determinants whose form fits c/et(AnA

f
n) for the multiple 

edge-modified sector graph or wheel. 
Examples showing numbers of trees containing various edges are given in Figure 2. 
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TSp1 TS2=3 TS3,8 T54=21 TS^SS 

w3 w4 w5 % 
TV\£ =5 TW4 =16 TW5 =45 TW6 =121 

(Integers adjacent to edges indicate trees having that edge. ) 

Figure 2. Examples of Sn and Wn+j 

8. SOIVIE OBSERVATIONS 

From Figure 2, it can be surmised that the sum of the number of trees containing edge one, edge two, etc., of 
Wn+j. is exactly n times TWn+i. Since there are n spokes and n rim edges in Wn+i, multiplication of the sum 
of (18) and (21) by n doesyieSd n times (16), which verifies the surmise. 

Also, from Figure 2 it can be surmised that Sn has this same property. The surmise again is true and rests eventual-
ly on the identity 

f i - / 

(26) F2n-2 = 5 3 tF2h-1 " F2n~2h+1 - F2h'F2n~2hl 

h=1 

which is left as a search or research exercise for the reader. 
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