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The Farey sequence is an old and famous set of fractions associated with the integers. We here show that if we 
form a Farey sequence of Fibonacci Numbers, the properties of the Farey sequence are remarkably preserved (see 
[2]). In fact we find that with the new sequence we are able to observe and identify "points of symmetry/' "inter-
vals," "generating fractions" and "stages." The paper is divided into three parts. In Part 1, we define "points of 
symmetry," "intervals" and "generating fractions" and discuss general properties of the Farey sequence of Fibon-
acci numbers. In Part 2, we define conjugate fractions and deal with properties associated with intervals. Part 3 con-
siders the Farey sequence of Fibonacci numbers as having been divided into stages and contains properties associated 
with "corresponding fractions" and "corresponding stages." A generalization of the Farey sequence of Fibonacci 
numbers is given at the end of the third part. 

The Farey sequence of Fibonacci numbers of order Fn (where Fn stands for the nth term of the Fibonacci se-
quence) is the set of all possible fractions Fj/Fj, l=Q, 1, Z 3, —, n - 1, j = 1, 2, 3, —, n (i <j) arranged in ascend-
ing order of magnitude. The last term is 1/1, i.e., Fj /F2. The first term is 0/Fn^j. We set FQ = O so that FQ +Ff 

= F2,F1 = F2=1. 

For convenience we denote a Farey sequence of Fibonacci numbers by f-f, that of order Fn by f-fn and the 
rth term in the new Farey sequence of order Fn by f(r)n . 

PART 1 
DEFINITION 1.1. Besides 1/1 we define an f(rjn to be a point of symmetry if f(r+i)n

 ar|d f(r-Dn have ths 
same denominator. We have shown in an appendix the Farey sequence of all Fibonacci numbers up to 34. 

DEFINITION 1.2. We define an interval to be set of all f-fn fractions between two consecutive points of sym-
metry,. The interval may be closed or open depending upon the inclusion or omission of the points of symmetry. A 
closed interval is denoted by [ ] and an open interval by ( ) . 

DEFINITION 1.3. The distance between f(r)k and f(k)n is equal to \r-k\. 

Theorem 1.1. If f(r)n is a point of symmetry then it is of the form 1/F,% Moreover f(r+k)n an^ Ur-k)n n a v e 

the same denominator if they do not pass beyond the next point of symmetry on either side. The converse is also 
true. 

Proof. In the f-f sequence the terms are arranged in the following fashion. The terms in the last interval are of 
the form F/_? /Fj. The terms in the interval prior to that last are of the form Fj^/Fj —. If there are two frac-
tions FM/FJ-1 and Fj_2/Fj-2 then their mediant* Fj/Fj lies in between them. That is, 

Fj-1 F,„2 .. Fj-1 . Fj Fj-2 
if -z— < - — then —— < — < -— 

Fj-1 Fj_2 Fj„-j Fj Fh2 

i f [LI K F_hl t h e n ^±2 Fj < F M 
Pj-2 Fh1 Fj_2

 < Fj Fh1 

*lf a/b < c/d, then (a + c)/(b + d) is the mediant fraction to those two fractions. 
1 
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This inequality can easily be established dealing with the two cases separately. 
We shall adopt induction as the method of proof. Our surmise has worked for all f-f sequences up to 34. Let us 

treat 34 as Fn-v For the next f-f sequence, i.e., of order Fn> fractions to be introduced are: 

rn rn rn rn 

Fj/Fn will fall in between 
5 * . and J « . . 
Fn-1 Fn-2 

First assume that F:/_/ /F"n-i < F"^2 ft~n-2• Since our assumption is valid for 34, Fj*iVFn-i lies just before 
Fj-2/Fn-2- Fi-3/Fn-2 W l " occurjust after F,_2/Fn-i from our assumption regarding points of symmetry. But 
F,-f/Fn lies in between these two fractions. The distance of F,-_f/Fn from the point of symmetry, say 1/Fj, is 
equal to the distance F;/Fn from that point of symmetry. Hence this is valid for 55. Similarly it can be made to hold 
good for 89, — . Hence the theorem, 

Theorem 1.2. Whenever we have an interval [1/Fj, 1/F/^jJ the denominator of term next to 1/Fj is Fj+2, 
and the denominator of the next term is F/+4, then F,+Q — . We have this until we reach the maximum for that 
f'fn sequence, i.e., so long as F/+2k does not exceed Fn. Then the denominator of the term after F/+2k wilt be 
the maximum possible term not greater than Fn, but not equal to any of the terms formed, i.e., it's either Fj+2k+i 
or Fj+2k~i, say Fj. The denominator of the terms after Fj will be Fj-2'Fi-4»"m till we reach 7/f/_/. (As an 
example let us take [1/3, 1/2] in the f>f sequence for 55. Then the denominator of the terms in order are 3, 8,21, 
55,34,13,5,2). 
Proof. The proof of Theorem 1.2 will follow by induction on Theorem 1.1. 
Theorem 1.3. (a) If h/k, h'/k', h**/k" are three consecutive fractions of an f>f sequence then 

h + h" , If 
k + k" k' 

if h'/k' is not a point of symmetry. 
(b) If h'/k' is a point of symmetry, say //F;,then 

Fh2h + Fh1h" _h< 
Fh2k + Fh1k" k' ' 

Proof. Case 1. (From Theorem 1.2) We see that 
h_= [jz2lf= Fj h" . Fj+2 
k Fh2 'k' FJ ' k" F'l+2 ' 

In this case 
Fi+2 + Fi-2_ *3'Fi„ ^=lf_ 
FJ+2 + FJ-2 3>Fj Fj k> ' 

(*Fn+2 + Fn_2 - 3Fn is a property of the Fibonacci sequence. See Hoggatt [1].) 
Case 2. 

hL=
FJ. L^^tl and hl=FJ±l 

k' Fj'k Fh2 k" FM 

(fram Theorem 1.2). Then 

Fj+1 + Fh2 _2Fj _Fj _h-

Fi+1 + Fh2 2Fj Fj k' 
similarly. 

Case 3. 

hL=F± h_=Ft2 *?' - FM 
k' Fj ' k Fh2 ' k" FH 

(from Theorem 1.2). Therefore 



1975] A FAREY SEQUENCE OF FIBONACCI MUMBERS 3 

h-1 
Fj-1 

+ 1-1-2 _ Fi _h' 
+ Fh2 Fj~ k' • 

Hence the result. 
Proof of 13b. Let h'/k'= 1/Fh From Theorem 1.2 it follows that h"/k"=3/Fj+2 and* 

Fh2h + F^h" _ 2Fh2 + 3Fh1 Fi+2 _ 7 
Fh2k + Fhlk" F,Fi+2 F,Fi+2 F; " 

Hence the theorem. 
Theorem 1.4. If h/k, and h'/k' are two consecutive fractions of an f-fn sequence then 

h-h' 
k-k' 

e f-fn (k-k'tO). 

Proof Since f(r)n is of the form F;/Fj, if Theorem 1.4 is to hold, then it is necessary that \h - h'\ be equal to 
Fj and \k-k'\ be equal to Fj. Since h/k and h'/k' are members also, 

h ; 

Further 
Fh 

= F, 

k' 

and \Fh-F;2\ = F;. 

But from the Fibonacci recurrence relation Fn=\Fn„i + Fn_2 we see that the condition for this is |// — /^ l < ^and 
\h ~h\ < 2 (but not zero) which follows from Theorem 1.2. Actually 

h-h'\ 
k-k' 

are the fractions of the same interval arranged in descending order of magnitude for increasing values of h/k. 

Definition 1.4. We now introduce a term "Generating Fraction." If we have a fraction Fj /Fj (i < jl We 
split Fj /Fj into 

Fh1 + Fj-2 
Fh1 + Fh2 ' 

We form from this two fractions F/,/ /Fj „ f and / r / - 2 / ^ / - 2 such that Fj/Fj is the mediant of the fractions 
formed. We continue this process and split the fractions obtained till we reach a state where the numerator is 1. Fj/Fj 
then amounts to the Generating fraction of the others. We call Fj/Fj as the Generating Fraction of an Interval (G.FJ.) 
if through this process we are able to get from the G.F.I, all the other fractions of "that" closed interval. We can 
clearly see a f-f sequence for Fv F2,"'*

 Fn- Ff/Fn will be a G.FJ. (We also note that Fj/Fj, Fh1/F^1f 

Fj„2 /Fi-2>"" belong to the same interval because the difference in the suffix of the numerator and denominator is 
j-i). Hence the sequence G.F.L's is Fj /'Fn,F2/'Fn ,F3/

fFn ,-,Fn-j /'Fn. We now see some properties con-
cerning G.F.I.'s. 

Theorem 1.5. If we form a sequence of the distance between two consecutive G.F.I.'s such a sequence runs thus: 
2,2, 4,4,6,6, 8,8, ••, i.e., alternate G.F.I.'s are symmetrically placed about a G.FJ. 

Theorem 1.6. If we take the first G.FJ., say f(g ) n , then f(gi+Dn and f(9l-i)n, have the same denominator. 
For f(g ) n the second G.FJ. f(g2+2)n^ a n d f(g2-2)n have the same denominator J n general for f(9k)n the kf 

G.FJ. f(gk+k)n a n d f(gk-k)n have t n e s a m e denominator. 
The proofs of theorems 1.5 and 1.6 follow from 1.2. 
(NOTE:: We can verify that for alternate G.F.I.'s g(g2)n, Ugjn > f(g6)n * "> ffak+kjn a n d f(gk-k)n have the same 

denominator for k is even and the sequence of distance shown above is 2, 2, 4, 4, 6,.6, 8, 8, —). 

PART 2 

Definition 2.1. We now define Fj„2 to be the "factor of the interval" 

Fi 'FhJ 
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More precisely the factor of a closed interval is that terms Fz where z is suffix of denominator minus suffix of the 
numerator, of each fraction of that interval, it can be easily seen (Part 1) that z is a constant. 

Lemma 2.1. If / / - ij =J2 - h > 0, then 

Proof. We apply Binet's formula that 
a-b 

where 

1 + J5 
2 ' b = L^L 

Then the left-hand side (LH.S.) of the expression and the right-hand side (R.H.S.) of the expression reduce as follows. 
To prove 

ah - h ' h a'2 -b1'2 a'* -bJ* a'1 -h'1 

a-b a-h a- b a -b 
3/W1 _ y W i 

a-b a-b 

because / / - / / > 0, Fj «,; is positive and hence can be put within the | I sign. 
To prove 

\(a'i -bJ>)(a''* -bt*)-(j* -b'^Ha^ -b^)\ = \(aJ*-J* -b^^Ha1^'^ -bJ'r'\)\ 

the LH.S. reduces to 

|a/i*'2 -Jib'* +b^+i* -bJia'2 -a*'2*1'1 +aJ*bli + hJ2a'1 -bi2+'^\ 

= \-aJ*b'2 -a'2bJ* +aJ*b'* +bj2a''\ • 

The R.H.S. reduces to 

la/Wi - ^ W i ^ W i +bj*~'* -bJ2"^aJl~fl\ . 

This may be simplified further using ab = -1 and / / - / / =J2 - h • The R.H.S. is then 

\a^h'2 + bJia'2 -aJ'2b^ -b'*a'*\ . 

We see that LH.S. = R.H.S. Hence the Lemma. 
Corollary. From this we may deduce that if FfJ /Fj1 and Fi2/Fj2 belong to the same interval, i.e., / ; - ij = 

J2-h / t n e n 

FjlFi2~~ FJ2Fi1 = F\i2-Ji\FJ2-i2 = F\f2~Ji\FJ'l-if 

Fj /Fj < Fj /Fj • 

will be an integral multiple of Fj w- or Fj _/ (the factor of that interval) which is the term obtained by the dif-
ference in suffixes of the numerator and denominator of each fraction of that interval. 

Definition 2.2 We now introduce the term "conjugate fractions." Two fractions h/k and h'/k',h/k and h'/k' 
are conjugate in an interval 

JL _J_ 
Fi'Ti-1 

if the distance of h/k from 1/Fj equals the distance of h'/k' from 1/Fh1 (h/k £ h'/k'). 

Corollary. Two consecutive points of symmetry are conjugate with distance zero. 

Theorem2.2. If h/k and h'/k' are conjugate [1/F1f 1/Fh1] then kh'-kh' = Fh2-

Proof. 'From Part 1, we can easily see that if h/k is of the form 

Hence 
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-=P- then h'/k' is J^J- (*) 

1/F„ and 1/F/,j are conjugate. This agrees with (*) since F2 = Fj = 1. Since the term after 1/F; is F4/ Fj+2 
and the term before 1/Fj_i is 2/Fj+1, we see it agrees with the statement (*) above. Proceeding in such a fash-
ion we obtain the result (*). Of course we assume here that there exist at least two terms in 

J_ _L 
Hence we can see that any two conjugate to fractions in 

/ / 

are given by 
Fi ' Fi-1 

Fj-i+2 Fj.j+1 

Fj • Fj-l ' 

We are required to show \FjFj-i+i - Fj-iFj-j+2\ = F-^2- This will immediately follow from Lemma 2.1. 

Theorem 2.3. (a) If h/k and h'/k' are two consecutive fractions in an f-fn sequence, which belong to [1/Fj, 
1/FM], then kh'-hk' = Fh2-

(b) Wh/k and h'/k'are conjugate in an interval [1/Fh UFh1] kh'~hk'= Fh2-

Proof. Theorem 2.3a and 2.3b can be proved using Lemma and Theorem 1.2. 

Definition 2.3. If 

^ e ± JL\ 
k^ WFM) ' 

we define the couplet for h/k as the ordered pair \ ' 

[li'k] ' (k'F^I 
Theorem 2.4. In the case of couplets we find that 

and 

where Fp is some Fibonacci number. 

Proof. Let h/k be 

Then (F,h) - k is 

(1) 

and let k- Fh1h is 

(2) 
Adding (1) and (2) we have 

(Fjh)-k = FpFh2 

k- Fh1h = Fp+1Fh2 , 

Fj-i+2 
Fi ' 

F/Fj-i+2 ~ Fj = FpFj_2 

Fj - F/_ / Fj^ 1+2 = Fp+1 Fh2 

Fi-2Fj-1+2 ~ Fp+2Fi-2 • 

Therefore Fj-1+2 = Fp+2 or / - / = p; i.e., 

(3) FiFj-i+2-Fj = FHFh2. 

We can establish (3) using Lemma 2.1. Hence the proof. 

Definition 2A. We define r , # . I# . ' 
J ! J_ lL\ h_ M 

\Fi'k) \k'FMl 
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I± (Did! _i_ 
\F; ' k' l\kf' Fh1 

to be conjugate couplets if h/k and h'/k' are conjugate fractions of the closed interval 

Theorem 2.5. In the case of conjugate couplets if 

Fjh - k = FpFh2 and k-F^h = Fp+1Fh2 , 
then 

F-,h'-k'= Fp.iFf.2 and k-FMh' = FpFf.2 

Proof. We note that (j — i) in the previous proof is the difference in the suffixes of Fj and F,-. If now 

h/k 
Fhi+2 

then p=j~-L But since hf/k' is conjugate with h/k, 

h'/k' = Ft!±l 
Fj-1 

Therefore the constant factor, say Fq in the equation for h'/k', Fjh'- k = FqF,^2 's s u c n t n a t 

q = j - 1 - i = (/-/')- 1 = p-1. 

Therefore Fjh'- k'= Fp„fF,-„2- Hence k - F,_ih'= FpF^2 since it follows from Theorem 2.4. 

Theorem 2.6. Since we have seen that if h/k and h'/k' are conjugate then the difference in suffixes of their num-
erators or denominators equals 1r we find 

h + h' 
k + k' 

1 _J_ and h-h' 
k-k' 

e / 1 

if 

Moreover 
m,m^ ( i ^ ) 

h+h' 
k + k' 

are the fractions of the latter half of the interval arranged in descending order while 
h-h' 
k-k' 

are the fractions of the first half arranged in ascending order, for increasing values of h/k. 

PART 3 
We now give a generalized result concerning "sequence of distances." 

Theorem 3.1a. Points of symmetry if they are of the form f(r)n then 

r G 12,3,5, 8, 12, 17, ••• 1. 
Or the sequence of distance between two consecutive points of symmetry will be 

1,2,3,4,5,6,-, 

an Arithmetic progression with common difference 1. 

Theorem 3.1b. The sequence of distance for fractions with common numerator F2n-1
 o r ^\2n ,s 

2n-1,2n,2n + 1,-. 
Proof. To prove Theorem 3.1a we have to show that if there are n terms in an interval then there are (n + 1) 

terms in the next. 
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Let there be p terms of the form Fj/Fj. It is evident that there are p + 1 terms of the form Fj+1 /Fj. But these 
(p + 1) terms of the form Fj+1/Fj are in an interval next to that in which the p terms of the form Fj/Fj lie. So 
the sequence is an AP with common difference 1. Moreover, the second term is always 1/Fn (evident). Hence the 
result. (Note: / - / is assumed constant.) 

If we fix the numerator to be 2 and take the sequence 

Fn'Tn -1 rn„2 

I 
'3 

then the sequence of distance between two consecutive such fractions is 3,4, 5, —. 
From Theorem 1.2 (Part 1) it follows that 2/Fj lies just before a point of symmetry, say 1/Fj. Since we have seen 

the sequence of distances concerning points of symmetry it will follow that here too the common difference is 1. The 
first term is 3 for there are two terms between 2/Fn and 2/Fn_i. The inequality 

2 ^ 1 ^ 3 ^ 2 

Pn-2 
< 

^n-l 

can be established. Hence the result. 
In a similar fashion we find that the sequence of distance for numerator 3 is 3,4, ft - . 
We shall give a table and the generalization 

Numerator Sequence of Distance 
12, 3, 4, ft -
44,5 , ft-
ft ft 7, ft ••• 

2n- 1,2n,2n + 1,2n+2,-. 

Definition 3.1. Just as we defined an interval, we now define a "stage" as the set of f-f fractions lying between 
two consecutive G.F.I.'s. The stage may be closed or open depending upon the inclusion or omission of the G.F.I.'s. 

F1 

F3 
p5 

F2n-1 

or 
or 
or 
or 

F2 

F4 

F6 

F2n 

Since the sequence of distance of G.F.I.'s is 2,2, 4, 4, ft ft 
equal numbers of terms. We define two stages: 

Fi~1 Fi ' and 

it is possible for two consecutive "stages" to have 

Fi Fk i+1 

to be conjugate stages if the distance of Fj/Fn from Fj„-[/Fn equals the distance of Fj+1/Fn from Ft/Fn. That 
is the number of terms in two conjugate stages are equal. We call a stage comparison of both these stages as a "com-
plex stage." Let us now investigate properties concerning stages. If we have complex stage 

Fi-1 Fj_ Fj+j 
rn rn rn 

then we define two fractions h/k and h'/k' to be "corresponding" if 

k \Fn 'Fj 
and 

k' 
(Fj Fj+7\ 

\Fn' Fn I 

and if the distance of h/k from Fj^/Fn is equal to the distance of h'/k' from Fj/Fn. 

Theorem 3.2. Two corresponding fractions have the same numerator. If h/k and h'/k' are corresponding frac-
tions then h = h'. 

Proof. This will follow from 1.2 (part 1). 
Let /--;_./ /Fn be the maximum reached in its interval so that F/_/ /Fn„i will be the maximum for the interval 

in which F,/Fn belongs, (where by maximum we mean the term with denominator f/+2Ar!n the sense of Theorem 
1.2). The term next to Fj^/Fn is Fj.2/Fn--j. Similarly the term next to Fj/Fn is Fj_2/Fn-2- But these frac-
tions are corresponding in such a fashion that we obtain the result. 
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Now Fj„i /Fn has necessarily to be the maximum in its interval. Since we have considered conjugate stages / is 
odd. Using Theorem 1.2 it can be established that alternate G.F.I.'s are maximum in their interval and that too, when 
suffix of numerator is even (i — 1 is even). 

Definition 3.2. Since the number of terms in a stage is odd, we define h/k to be the middle point of a stage 

[Fn 'Fn\ 

if it is equidistant from both G.F.I.'s. We can deduce from this that h/k is a point of symmetry since F/_; /Fn,3ncl 
Fj/Fn have the same denominator. So the middle point of a stpge is a point of symmetry. 

Corollary. If two conjugate stages are taken then their middle points are corresponding. (This follows from the def-
inition). But their numerators should be equal. This is so, for the middle points are points of symmetry whose num-
erator is 1. This agrees with the result proved. 

Definition 33. Two fractions h/k and h'/k' are conjugate in a complex stage if the distance of h/k from 
F,„<i /Fn equals the distance of h'/k' from Fj+i /Fn, h/k < h'/k' and the complex stage being 

Fj-1 Fj_ Fj+A 

I Fn Fn Fn J 
Taking their middle points 

[— — I [ Fp' Fp+1 J 
we can see that fractions conjugate in this interval are conjugate in the complex stage. Further we saw that for con-
jugate fractions of the interval, h/k, h'/k', 

h+h' 
k + k' 

re fractions of the latter half of the interval arranged in descending order, and 

\ k-k'\ 
l t 

are fractions of the first half arranged in ascending order for increasing values of h/k. 

Theorem 3.3. For conjugate fractions h/k and h'/k' lying in the outer half of the stage we see that 

h+h' 
k + k' 

are fractions of the latter half of the interval in ascending order while 

I h-h'\ 
\k-k'\ 

are fractions of the first half in descending order for increasing values of h/k. We here only give a proof to show that 

IT**- and !=£ 
k + k' k-k 

are in the interval but do not prove the order of arrangement. 
Proof. For h/k, h'/k', in the inner half the proof has been given (previous part). The middle point of 

\Fhl 5.1 
is 1/Fn„j+2- Similarly the middle point of 

lF" ' F" J 
is 1/Fn-j+2„ That two conjugate fractions of the outer half of a conjugate stage differ in suffix by 1 can be establish-
ed. That is,to say, if 
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then 

where / is the interval [1/FD 

L 
k 

jf_= Fj-(n.j) 

k'~ FH 

1/Fp+il and 

h-h' 

tj-(n-i)-1 

b+h' = F/-(n-i)+1 
k + kf Fj+1 

k-k' 
Fj-(n-ih2 

Fh2 
e / 

Hence the proof. 
Definition 3.4. !nan f°f sequence of order Fn, [F, /Fn, Fj+1 /'Fn] represents a stage. Let us take an f-f se-

quence of order Fn+f. If there we take a stage [Fj /Fn+j, Fj+f /Fn+i], then we say the two stages are corres-
ponding stages. More generally in an f*f sequence of order Fn and an f-f sequence of order Fn+fc, 

Fi Ft i+1 
Fi Fi+1 

Fn+k ' Fn+k 

are corresponding stages. We stage here properties of corresponding stages. These can be proved using Theorem 1.2. 

Theorem 3.4a. If 
Fj Fj+1 and 

hi+l 

Fn+k' ' Fn+k 

are corresponding stages then the number of terms in both are equal. 
Theorem 3Ah. There exists a one-one correspondence between the denominators of these stages. If the denom-

inator of the qth term of [Fj / Fn, Fj+1 /Fn] is Fj then the denominator of the qth term of 
Fi Fi+1

n 

rn+k ' / \ n+k is FJ+k. 
We can extend this idea further and produce a one-one correspondence between 

Fi F, i+m and 
Fj Fj+m where [i-i] Fp+k Fn+j< 

stands for the set of fractions between a/b and c/d inclusive of both. A further extension would give that given 
two f»f sequences, one of order Fn, and the other of order Fn+k. 

Theorem 3.5a. The numerator of therth term of the first sequence equals the numerator of the rth term of the second. 
Theorem 3.5h. If the denominator of the rth term of the first sequence is Fj, then the denominator of the / 

term of the second series is Fj+]. Precisely 
(a) the numerator of f(r)n is equal to the numerator of f(r)n+k 

(b) if the denominator of f(r)n = Fj, the denominator of f(r)n+k = Fj+k 
This can be proved using 1.2. We can arrive at the same result by defining corresponding intervals. 

Definition 3.5. Two intervals, [1/ Fjf 1/Fj+^J in an f-f sequence of order Fn and [1/Fj+k, 1/Fj+kJ in an f-f 
sequence of order Fn+k are defined to be corresponding intervals. 

The same one-one correspondence as in the case of corresponding stages exists for corresponding intervals. We can 
extend this correspondence in a similar manner to the entire f - f sequence and prove that 

(a) the numerator of f(r)n is equal to the numerator of f(r)n+k * 
(b) if the denominator of f(r)n = Fj , the denominator of f(r)n+k = Fj+k • 
(c) GENERALIZED f - f SEQUENCE. We defined the f«f sequence in the interval [0,1]. We now define it in the in-

terval [O,oo], 
Definition 3.6. The f°f sequence of order Fn is the set of all functions Fj/ Fj, j <n arranged in ascending order 

of magnitude i,j > 0. If / < / then the f°f sequence is in the interval [0,1]. The basic properties of the f-f sequence 
for [O/l] are retained with suitable alterations 

Theorem 3.6.1. f(r)n is a point of symmetry if f{r+i)n and f(r-i)n
 h a v e t n e s a m e numerator (beyond / /1) . If 

f(r)n is a point of symmetry then f(r+k)n m^ f(r-k)n n a v e t n e s a m e numerator, -if each fraction does not pass beyond 
the next G.F.I. in either side (beyond 1/1). 
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Theorem3.6.2. A G.F.I, is a fraction with denominator Fn . 

Theorem 3.6.3. A point of symmetry has either numerator or denominator 1. 

Theorem 3.6.4. Beyond 1/7, any interval is given by [Fn-j / 1, Fn/1]. The factor of this interval is again Fn_2-

Theorem 3.6.5. The two basic properties 

(a) !L±J£= OL 
k + k" k' 

and 
(b) kh-hk'=Fn_2 

are retained. 
Theorem 3.6.6. If (a) is not good for h'/k' being a point of symmetry then 

bL= Fn-1h,"+Fn-2h .f h_< lf_, hi. hl_= [R 
k' Fn_1k"+Fn„2k k k' k'" k' 1 

For a pertinent article by this author entitled "Approximation of Irrationals using Farey Fibonacci Fractions," see 
later issues. 

/•/Sequence of Order 5 
0_ I I I I I I I 
3' 5' 3' 5' 2' 5' 3' 1 

/•/Sequence of Order 8 

0. L L l L l l L l l l L 
5' 8* 5' 8' 3' 8' 5' 2' 5' 8' 3' 1 

/•/Sequence of Order 13 

( L J L L A L A I L I A I L I A 5 . I L 
8' 13 ' 8' 13 ' 5' 13 ' 8' 3' 8' 13 ' 5 ' 2 ' 5 ' 13 e 8 ' 3 ' 1 

/•/Sequence of Order 21 
1 1 J_ A I _3_ J_ 1 _3_ A1111LAIL1JL!3_!LIL 
13' 21 ' 13 ' 21 ' 8' 21 ' 13 ' 5' 13 ' 21 ' 8' 3 ' 8 ' 21 ' 13 ' 5' 2' 5' 13 ' 21' 8' 3' 1 ' 

ff Sequence of Order 34 

A JL J_ A A 1 i 1 1 1 . 1 1 1 
21 ' 34 ' 21 ' 34 ' 13 ' 34 ' 21 * 8 ' 21 ' 34 ' 13 ' 5 ' 13 ' 

A A I I I A A A I L I A H A I I L 
34 ' 21 ' 8 ' 3 ' 8 f 2f ' 34 ' 13 ' 5 ' 2 ' 5 ' 13 ' 34 ' 21 ' 8 ' 3 ' 1 ' 
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