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An observation that certain sequences of power residues modulo some primes were generalized Fibonacci sequences
led to the investigation of the positive sequence with general term n“ — n — 7. This sequence was found to have
some interesting properties.

For example,

3k = k-1 4 352 (154 5), 4% = 457 1452 (;mod 11),

{5’(} is similarly defined mod 19, etc. If we take as initial values 7, n, and define a Fibonacci sequence based on
these values, the r*/ term is given by nf,.7 + f..2, where £, is the ™ Fibonacci number. It is then a simple matter
to show that n? — n — 7 divides n” — nf,.; — f,.5. Thus,

% = n* 1+ 0%2 (mod n2-n—1).
THE SEQUENCE {ng— n—1 }

1. Let mfn)=n2—n—1 Let p beprime,and let p|m(N). Then there is a unique partition of p, p=a+b,
such that p|m(N + kp) and p|m(N + kp +a).

i. That p|m(N + kp) is easily verified

ii. p|m(N+kp+a)

miN +kp+a) = N2+ 2Nkp + 2Na + k?p? + 2kpa +a° — N —kp —a—1 .

This is divisible by p if p|2V+a— 1.

There is some smallest value of a for which this is true, and this value of a is independent of V. Forlet pim(n}
n#N, Then p|m(N + kp +a’) for a’ such that p|Zn+a’— 1.

Thus,

pk’ = a—1+2N, pk” =a =1+2n.

Subtracting and adding:

pk” = (a"—a)+2(n—N) and pk* = ata’ +2(N+n—1).
Since
p[/VZ-—/V—I and p[nz—n—I,
then
p|{/V2—/V— 1)—(n2-n-1),
thatis, p|(N - n)(N+n—1).
Either p|N —n or p|N+n— 1.
In the former instance it follows that p|a”— a, and since both are less than p, a =a’. In the latter case p|a + a’ and
a+a’=p, thatis, a’=bh.
2, If p|m(N), then p|m(N — b).
m(N —b) = m(N)+b(b—2N+1).
But
b—2N+1=p—a—-2N+1=p—(a—1+2N), and plla—1+2N).
3. Ifaprime p appears as a factor in the sequence it does appear at these regular intervals of @ and 5, and only
then. For let
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p|m(N), p|m(N+a) and p|lm(N+a+x), a+x <p.
m(N+a+x) = m(N+a)+x(2N +a— 1)+ (a+x).
Since p|m(N +a) and p|2N +a — 1, p must divide a +x. But this is possible only if p = a +x, and x = b.
4, Let
m(/V} = p{lp:2 pgt ,
p; prime, t > 1. We have N2> m(N)> (N - 1)2 Nop =N, for if m(N) = p-Q with p = N, we have

=N-71--1
Q=N-1-5,

which is impossible. Thus some p < /. But in that event N — p > 0 and p |m(N — p), yielding: if p|m(N), then

p = m(N) or p|mln)
forsome n <N.

5. All factors of m(/N) terminate in 7, 5 or 9. The period for m(N) modulo 10is 1, 5, 1, 9, 9. The product of such
elements terminates in 7, 5 or 9. Since N2> m(N), at most one p can exceed /V, and by (4) at most one prime factor
new to the sequence can be introduced per term. |f we assume for n < k all factors terminate in 7, 5 or 9,and if
m(N) = p-Q for N > k, with p a new factor, then since @ terminates in 7, 5 or 9 so must p.

6. Further, itis true that every prime of the form 70n £7 is a member of the sequence.

i. First we establish that 5 is a quadratic residue of every prime of the form 70n 7. If p is an odd prime (p #5),

then by the Law of Quadratic Reciprocity,
5-1 p-1

5\(e ) -2 2 .
( p ) ( 5) =1 *1-
Thus (p/ 5) = (5/p), and if 5 is a quadratic residue of p, p is also a quadratic residue of 5, that is, 5|x2 — p for some
x. It is easily verified thatp =£7 mod 10.

ii. There are two incongruent solutions to x
andlet N=(z+17)/2

2_5= 0 mod p, z and p — z. One is odd, the othereven..Let z be odd,

N2 —N-1=%4z2-5. p|l2-5 -pN2-N-1.

7. An examination of the sequence reveals an unexpected number of terms which are prime. However, this situa-
tion cannot be expected to continue. It is known that primes of the form 70 n +7 and 70n £3 are equinumerous[1],
and that 2 7/p, p prime, diverges.

E 12 —n-1

n=2

converges, as must the subseries consisting of terms which are prime. The implication being, terms, n2-n- 1,
which are prime must become rarer as 77 increases.

SOME TERMS OF m(n) =n?—n—1

min) | n| min) | n| mia)l n| min) |n | _min)yn| _min)| n| _min) | n|_min}| n| min)

1 12| 131 |22| 461 |32| 991 |42| 1721 |52 11-241{62| 19-199 72| 19-269 |8229-229 |92 11-761
5 113| 5-31 |23|5-101|33|5.211 | 43| 5-19%|53|5-19-29/63|5-11-71] 73| 5-1051 |83 |5-1361 [ 93 |5-29-59
11 14| 181 |24/ 19-29(34|19.59 | 44| 31-61|54| 2861 |64| 29-139] 74| 11-491 | 84| 6971 |94 | 8741
19 |15 11-19]25| 599 |35|29.41 |45| 1979(55| 2969 |65| 4159 | 75| 31-179 |85/|112-59 | 95| 8929

239 26| 11-59|36| 1259 |46| 2069 |56| 3079 |66| 4289 | 76| 41-139 | 86| 7309 | 96(11-829
41 171 271 (27| 701 |37] 11® |47| 2161|57| 3191 (67| 4421{77| 5851 |87| 7481 |97| 9311
5.11/18| 5-61|28/5-151|38|5.281 | 48| 5-11-41|58| 5-66168| 5-911 | 78| 5-1201 | 88(5-1531] 98(5-1901
71 19| 11-31]29| 811 {39| 1481 |49| 2351{59| 11-311{69| 4691 | 79| 61-101 | 89(41-191] 99(89-109
89 (20| 379 |[30{11-79|a0| 1559 |50| 31-79|60| 3539 |70| 11-439] 80| 71-89 | 90| 8009 {100{19-521
109{21| 419 |31| 929 |[41/11-149]51| 2549{61| 3659 |71| 4969 | 81/ 11-19-31| 91/19-431
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