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An observation that certain sequences of power residues modulo some primes were generalized Fibonacci sequences 
led to the investigation of the positive sequence with general term n4" - n - 1. This sequence was found to have 
some interesting properties. 

For example, 
3k *3 3k'1 + 3k~2 (mod 51 4k = 4k'1 +4k~2 (mod 11), 

\5k\ is similarly defined mod 19, etc. If we take as initial values 7, n, and define a Fibonacci sequence based on 
these values, the rth term is given by nfr^ + ffa.2, where fr is the rth Fibonacci number. It is then a simple matter 
to show that n2- n - 7 divides nr- nfr^ - fr„2* Thus, 

nk ^nk-1 + nk~2 (mod n2-n-1). 

THE SEQUENCE | / ? 2 - / ? - 7 | 

1. Let m(n) = n — n — 1. Let p be prime, and let p\m(N). Then there is a unique partition of p, p = a + b, 
such that p\m(N + kp) and p\m(N + kp + a). 

i. That p \m(N + kp) is easily verified 
ii. p\m(N + kp + a) 

m(N + kp+a) = N2 + 2Nkp +2Na +k2p2 + 2kpa +a2 ~ N - kp - a - 1 . 

This is divisible by p if p \2N + a - 1. 
There is some smallest value of a for which this is true, and this value of a is independent of N. For let p\m(n) 

n^N„ Then p\m(N + kp + a') for a' such that p\2n + a'~ 7. 
Thus, 

pkf = a- 1+2N, pk1* = ae = 1 + 2n. 

Subtracting and adding: 

pk" = (a'-a) + 2(n-N) and pk* - a + a'+2(N + n - 1). 
Since 

p\N2-N-1 and p\n2- n - 1 , 
then 

p\(N2-N~ 1)-(n2-n- 1) , 
that is, p\(N-n)(N + n- 1). 

Either p\N- n or p\N + n - 1. 
In the former instance it follows that/? \a'- a, and since both are less than /?, a = a'. In the latter case p\a + a',and 

a+a'=pf that is, a' = b. 
2. If p\m(N), then p\m(N-b). 

m(N-b) = m(N) + h(h-2N+1). 
But 

b-2N+1=p-a-2N+1=p~(a- 1 + 2N), and p\(a - 1+2N), 

3. If a prime p appears as a factor in the sequence it does appear at these regular intervals of a and b, and only 
then. For let 
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p\m(N)e p\m(N + a) and p\m(N + a+x), a+x<p. 

m(N + a+x) = m(N + a)+x(2N + a- 1) + fa+x). 

$mwp\m(N + a) andp\21\/ + a- 1, p must divide a+x. But this is possible only if p = a + x, m&x = b. 
4. Let 

m(N) = prffy -pr
tt , 

Pi prime, t > 1. We have N2 > m(N) > (N - I)2. Uop = /\f, for if m(N) =p*Q with /? = /!/, we have 

N- 7 - - 1 
N 

which is impossible. Thus some/? <N. But in that event N -p > Q mdp\m(N - p), yielding: \\p\m(N), then 

p = m(N) or p\m(fl) 
for some n <N. 

5. All factors of m(N) terminate in 7, 5 or 9. The period for m(N) modulo 10 is 7, 5, 7,9, 9. The product of such 
elements terminates in 1, 5 or 9. Since N2 > mfN), at most one/7 can exceed N, and by (4) at most one prime factor 
new to the sequence can be introduced per term. If we assume for n < k all factors terminate in 7, 5 or 9,and if 
m(N) = P'Q for N > k, with/7 a new factor, then since Q terminates in 7, 5 or9 so must p. 

6. Further, it is true that every prime of the form 10n±1 is a member of the sequence. 
i. First we establish that 5 is a quadratic residue of every prime of the form Wn ±1 If p is an odd prime (p ? 5), 

then by the Law of Quadratic Reciprocity, 

( f ) (1)- <-v - =«. 
Thus (p/5) = (5/pi and if 5 is a quadratic residue of/7, p is also a quadratic residue of 5, that is, 5\x2 - p for some 
x. It is easily verified that/7 = £ 7 mod 10. 

ii. There are two incongruent solutions to x2 - 5 = 0 modp,z and p - z. One is odd, the other even..Let z be odd, 
and let N=(z+1)/2. 

N2-N- 1 = V4z2-5l p\z2-5 :.p\N2-N-1. 

7. An examination of the sequence reveals an unexpected number of terms which are prime. However, this situa-
tion cannot be expected to continue. It is known that primes of the form 10n±1 and 10n ±3 are equinumerous [ 1 ] , 
and that 2,1/p, P prime, diverges. 

5-1 p-l 
2 ' 2 

] T 1/n2-n-1 
n=2 

converges, as must the subseries consisting of terms which are prime. The implication being, terms, n2- n - 1, 
which are prime must become rarer as n increases. 
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