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ABSTRACT 
It is shown here that if n is an odd number of the form paM10', paM24, paM34, paM48 or paM124, where M is 

square-free and p is a prime which does not divide M, then n is not perfect. 

1. INTRODUCTION 

Euier (see page 19 in [1]) proved that if/? is odd and perfect (that is, if n has the property that its positive divisor 
sum a(n) is equal to 2n) then/? = p^N2 where pKN and /? = a = / (mod 4). In considering the still unanswered ques-
tion as to whether or not an odd perfect number exists, several investigators have focused their attention on the con-
ditions which must be satisfied by the exponents in the prime decomposition of N. If M is square-free and ]3 is a 
natural number then it is known that/? = p0LM1^ is not perfect if j3 has any of the following values: 1 (Steuerwald in 
[8]), 2 (Kanold in [3]), 3 (Hagis and McDaniel in [2]),3k+ 1 wherek is a non-negative integer (McDaniel in [5]). 
Our purpose here is to show that n is not perfect for five additional values of /3. Thus, we shall prove the following 
result. 

Theorem. Let n = paM2^ where M is an odd square-free number,/?^, and/? =a= 1 (mod4). Then n is not per-
fect if (A) p = 5, (B) 0=12 or 62, ( 0 $ = 24, (D) 0=17. 

2. S0IV1E PRELIMINARY RESULTS AI\tD REIVIARKS 

For the reader's convenience we list several well-known facts concerning the sigma function, cyclotomic polynom-
ials, and odd perfect numbers which will be needed. If q is a prime the notation qcl K means that qc\K but qc+1)(K. 

(1) If P is a prime, then 

o(Ps) = EFm(P) , 
m 

where Fm(x) is the mth cyclotomic polynomial and m ranges over the positive divisors other than 1 o f s * /. (See 
Chapter 8 in [7].) If/? is odd and perfect and q is an odd prime then it is immediate, since o(n) = 2n, that#|/? if and 
only if q\Fm(P) where/75 is a prime power such thatP5!/? m&m\(s+ 1). 

(2) If m = qc where q is a prime then q\Fm(P) if and only \\P= 1 (modq). Furthermore, if q\Fm(P)md m >2, 
then q\\Fm(P). (See Theorem 95 in [6].) 

(3) If q\Fm(P) and qjfm,theng = 7 (modm). (See Theorem 94 in [6].) 

(4) If n = pap^1 —P^x is odd and perfect then the fourth power (at least) of any common divisor of thejijum-, 
bers-?/3/+ / (i = 1,2, ••>, t) divides n. (See Section III in [3].) 

(5) If n is an odd perfect number then /? is divisible by (p + 1)/2. 
We shall also require the following lemma which, to the best of our knowledge, is new. 

Lemma. Let n = paM2® be an odd perfect number with M square-free. \\2$+ 1 = RQ3 where Q is a prime dif-
ferent from/? and QlfR, then at most 2$/a distinct prime factors of M are congruent to / modulo Q. 
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Proof. Since (2*\n, by (4), and Q £p we have Q2^\\n. If P is a prime factor of M then from (1) we see that 
F j(P)\n for j= 1,2,-, a. 

Thus, if P = 1 (mod Q) then Qa \n, by (2). It now follows that if M is divisible by C distinct primes, each congruent 
to / modulo Q, then QaC\n. Since Q2(5\\n, C<2$/a. 

We are now prepared to prove our theorem. Our proof utilizes the principle of reductio ad ahsurdum with 
Kanold's result (4) furnishing a starting point and our lemma providing a convenient "target" for contradiction. The 
prime factors of the cyclotomic polynomials encountered in the sequel were obtained using the CDC 6400 at the 
Temple University Computing Center. For the most part only those prime factors of Fm(P) were sought which did 
not exceed 105» 

3. THE PROOF OF (A) 

We begin by noting that 

F77(199) = 11R7 and F11(463) = 11>23-5479R2 . 

where every prime which divides R7R2 exceeds 105. Since 

R7/R2 = (8.899-1021)/(3.273-1Q20)''= 27.2 

we see that R2 IfRj from which it follows that R 7 R2 has at least two distinct prime divisors/3/ mdP2t both greater 
than tO5. By (3), P1 = P2=1 (mod 11). We also remark that if 

P3 = 1806113 and P4 = 3937230404603 = F11(23)/11 

then it can be verified that neither of the primes P3 orP4 divides either R7 or R2. 
Wow assume that n = paM10 is perfect From (4) we see that 1P \n and, therefore, that 

F71(11) = 15797* 1806113\n. 
We now consider three possibilities. 

CASE 1. p = 15797. By (5), 3-2633\n. St was found that 

2113\F71(2633), 683°7459\F71(2113), 23-99859 \F7i (683), and 3719-8999 \Ff1 (99859). 
Also, 

463\Ff1(3719) and 199\F77(1806113). 

St follows from (1) that n is divisible by each of the following eleven primes, all congruent to / modulo 7 /: 

23, 199, 463, 683, 2113, 3719, 7459, 8999, 99859, P2, P4 . 

But this is impossible since, according to our lemma, M has at most 10 prime divisors congruent to / modulo 11. 

CASE 2. p= 1806113. By (5), 3.17>177Q7\n. 1013\F17(17707) and 199\F17(1013); while 

463\F17 (15797), 23>5479\F17(463), and 1277-18701 \F77(5479). 

From (1) and the discussion in the first paragraph of this section we see that each of the eleven primes 

23, 199, 463, 1013, 1277, 5479, 15797, 18701, P7, P2, P4 

divides n. Our lemma has been contradicted again. 
CASE 3. p ? 15797 and/7 ? 1806113. Since 199\F17(1806113) and 463\F71 (15797) we see from the discussion 

thus far that n is divisible by the following eleven primes: 

23, 199, 463, 1277, 5479, 15797, 18701, P7, P2, P3, P4. 

If p = 18701 then 3 \n and, therefore, 3851 (a factor of F77(3» divides /?. If p f 18701 then n is divisible by 34607, 
a factor of F77(18701). In either case n is divisible by twelve primes, each congruent to / modulo 11, at most one 
of which is p. This contradiction to our lemma completes the proof of (A). 

4, THE PROOF OF (B) 

If we assume that n = paM2(3 is perfect, where j3= 12 or 62, then 54 \n by (4). lip ^2 (mod3) then from (5) we 
have 3\n, and since FQ(3)= H2 it follows from (1) that 3-52°11\n. But this contradicts a well known result of Kan-
old's ((2) Hilfssatz in [4]). We conclude, since/? = / (mod4), that/7 = 7 (mod 12). 

Since 54\n we have 524\\n (or 5124\\n), and from (1) we see that 
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F5(5) = 1h71 and F25(5) = 101-251-401-9384251 

both divide /?. 
Proceeding as in the proof of (A) and referring to Table 1 we see that/7 is divisible by at least 43 different primes 

congruent to 1 modulo 5. (Here, and in our other tables, the presence of an asterisk indicates that the prime might 
be/?.) Since at most one of these primes can be/?, and since our lemma implies that M has at most 12 (or 41) prime 
factors congruent to 1 modulo 5, we have a contradiction. 

TABLE 1 
Selected Prime Factors of Fg(q) and F2s(q) 

q 

5 

11 
71 
101 
401 

9384251 

3221 
211 
31 

1231 
191 

1051 

1301 
13001 

F5(q) 

IT, 71 

3221 
211,2221* 

'31,491,1381* 
1231 

181*, 191 

1361 
17351 
3491 

1871,13001 
241* 

61* 
1801*,5431,17981,32491 

F25(q) 

101,251,401,9384251 

3001*, 24151 

1051,70051 

151,601*, 1301,1601 

4951 
55351 

5101*, 10151,38351 
2351,19751 

701,6451 

5. THE PROOF OF (C) 
Assume that/? =/?a/T8 is perfect. Then 748ll/? by (4),and if/? ^2 (mod 3) then 348\\n by (5). (We note that p $ 29 

since otherwise 3-5-7\n which is impossible.) According to Table 2, in which the upper half is applicable if p=2 
(mod3) and the bottom half if /? = / (mod3), we see that/? is divisible by at least 26 primes congruent to 1 modulo 
7, at most one of which can be/?. This is a contradiction since, by our lemma. M is divisible by at most 24 such 
primes. 

6. THE PROOF OF (D) 
We shall prove a more general result which includes (D) as a special case. Thus, suppose that 

n = papfi - p^ and that 35\(2fr + 1) for / = 1,2, - , t 

If n is perfect then 354\n by (4). As in the proof of (B), p = 1 (mod 12), and from (1) we see that FJ5) = 11- 71 
and Fn(7) = 29-4733 each divides/?. Referring to Table 3 and noting that either 181 or 86353 is notp we see that n 
is divisible by the primes 

5,7, 11,29,31,41,43,61*,71, 101, 113, 127, 131, 151, 191, 197,211,241*,251,271,281,491,911. 

If m is the product of the primes in this list which are not congruent to 1 modulo 12, then 

a(n)/n > o(61-241m4)/(81 -241m4) > 2. 

This contradiction shows that /? is not perfect. 

7. COiCLUDIWG REMARKS 

From the results obtained to date we see that if n = paM2@ is perfect then either2@+ 1 = q > 13 where q is 
a prime, or 2j3 + 1 = m > 55 where m is composite. Thus, it seems reasonable to conjecture that an odd number of 
the fornn paMz®, M square-free, cannot be perfect. It is clear, however, that the proof must await the development 
of a new approach: the magnitude of the numbers encountered for which factors must be found makes the attack of 



28 SOME RESULTS CONCERNING THE NON-EXISTENCE 
OF ODD PERFECT LUMBERS OF THE ¥QRMpaM2^ 

FEB. 1975 

TABLE 2 

Selected Prime Factors of Fn (q) and F49 (q) 

q 

i 
3 

29 
3529 
1093 
491 

131713 

88009573 
16759 

7 

29 
4733 

197 
70001 
83203 

2957767 
1373 

50359 
43 

16759 

Fn(q) 

29,4733* 
1093 

88009573 
7883 
14939 

617*, 1051 
43, 239 

71,22807 
701*6959 

29,4733 

88009573* 
70001 

97847,2957767 
50359, 263621 

43 

127 
281,659 
71,1093* 
5839 

701,6959 

Fjq) 

3529 
491,4019,8233,51157,131713 

197* 
16759 
883 

8i27 

4999 
6763 

3529* 

197 
83203 

1373 

83497* 

16759 
491 

883,6763 

TABLE 3 

Selected Prime Factors of Fs (q) and F7 (q) 

q 

5 
7 

71 
4733 

211 
101 

70001 

292061 

191. 

1871 
127 

181* 
86353* 

151 

281 
1499 

113 

Fjq) 

11,71 

211 
41,101 

292661 
31,491 
61*, 181* 

191,241* 

1871 

151 

281 

271 
131 

251 

Fjq) 

29,4733 

70001 

127,197 

911 
43,86353* 

281 

1499 

113 

the present paper impractical for "large" deficient values of 2$ + 1 (m is deficient of o(m) <2m), even with the aid 
of a high-speed computer. Six is perhaps the only value of j3for which 2$+ 1 is a prime power within reach at pres-
ent. Sf, on the other hand, 2$+ 1 = m is abundant (that is, o(m) >2m) then it is trivial that n = paM2® cannot be 
perfect; for by (4), m\n and this implies that o(n)/n > o(m)/m > 2. 
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