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Extremely dedicated Fibonaccists might possibly recognize that this sequence can be derived by subtracting 2 from 
every other Lucas number. The purpose of this note is to describe how this rather bizarre sequence arises naturally in 
two quite disparate areas of combinatorics. For completeness, and to guarantee uniformity of notation, all basic def-
initions will be given. 

A. FIBONACCI SEQUENCES 

Any sequence u / , ^ , ^ , ••• i that satisfies xn= xn-i+ xn-2 for n > 3 will be called a Fibonacci sequence; 
such a sequence is completely determined byx / andA^- The Fibonacci sequence i Fn I with F; = F2 = 1 is the 
sequence of Fibonacci numbers; the Fibonacci sequence I Ln\ with £./ = 1, L2 = 3 is the sequence of Lucas 
numbers. For reference, the first few numbers of these two sequences are given as follows: 

12 3 4 5 6 7 8 9 10 11 12 

Fn: 112 3 5 8 13 21 34 55 89 144 

Ln: 1 3 4 7 11 18 29 .47 76 123 199 322 

There are of course many identities involving these numbers; two which will be used here are: 

Fk+2 = 3Fk - Fk„2 k > 3 . 

Lk =3Fk-2Fk„2 k>3. 

Both of these identities can be verified by a straightforward induction argument. 

B. THE FUNDAMENTAL MATRIX 

In both of the combinatorial examples to be discussed, it will be important to evaluate the determinant of the nxn 
matrix An which is defined as: 
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In words, An has 3's on the digaonal, -7's on the super- and sub-diagonals, -7's in the lower left and upper right-
hand corners, and O's elsewhere. This description explains why we set 

A1 = [1] and A2 U i\ • 
To facilitate the evaluation of det/t^, define Tn to be the nxn continuant with 3's on the diagonal, -7 's on the 

super- and sub-diagonals, and O's elsewhere. That is: 
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Lemma. det Tn = F2n+2 • 
Proof. The lemma is certainly true for n = 1 and n = 2f since 

T, = [3], and T2 = [_* ~\ ] . 

Thus we will assume that the lemma is true for all k<n, and expand det Tn by the first row: 

det Tn = 3 det Tn-1 - (-1) det 
- 7 : - 7 

= 3 det Tn-1 - det Tn-2 = 3F2n ~ ^2n-2 = ?2n+2 • 

We are now able to verify that the sequence \ det A / , det A2, det A3, — ] is the sequence in the title. 
Theorem. detAn = L2n-2. 

Proof. The theorem is true for A 7 and A2 as defined above; this can be easily verified. Now for n >2,we can 
expand detAn by its first row to obtain: 

(1) detAn = 3det Tn.7 - (-1) det /?„_7 + (-1)n+1(-1) detSn.7 , 

where Rn and Sn are nxn matrices defined by: 

- / . - 7 
- ; ; • • / • : ; 

Notice that / " „_ / is symmetric, so we have 

t _ 

and 

- 7 ; - 7 

- 7 : 
\Tn-1 

: - 7 
Thus: 

(2) detSn = detSf
n = (-1)n~1det Rn . 

Now, expanding det/?^ by the first column, we obtain: 

detRn = (-DdetTn-T + f-ir'f-Ddet 

Thus: 

(3) 

- 7 
3 

-1 
\ 

- ; 3 

= -detTn-i + f - l f f - l ) n+2t in-1 

det Rn -det Tn-i - 7 

We can now substitute (2) and (3) into (1), and we obtain: 

det A \n+2, \n-2, 
n - 3det Tn.7 + (-det Tn.2- 1) + (-1)n^(-1)n^(-det Tn-2~ 1) = 3detTn.1-2detTn-2-2. 

Then by using the Lemma and an identity mentioned earlier, we have: 

detAn = 3F2n-2F2n-2-2 = L2n-2. 

C. SPANNING TREES OF WHEELS 

This section begins with some very basic definitions from graph theory. The reader uninitiated in this subject is 
urged to consult one of the many texts in this field (for example, [1] or [2]). 

A graph on n vertices is a collection of n points (called vertices), some pairs of which are joined by lines (called 
edges). 

A subgraph of a graph consists of a subset of the vertices, together with some (perhaps all or none) of the edges of 
the original graph that connect pairs of vertices in the chosen subset. 

A subgraph containing all vertices of the original graph is called a spanning subgraph. 
A graph is connected if every pair of vertices is joined by a sequence of edges. 
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A cycle Is a sequence of three or more edges that goes from a vertex back to itself. 
A tree is a connected graph containing no cycles. It is easy to verify that any tree with n vertices must have exactly 

n - 1 edges. 
A spanning tree of a graph is a spanning subgraph of the graph that is in fact a tree. Two spanning trees are con-

sidered distinct if there is at least one edge not common to them both. 
Given a graph G, the complexity of the graph, denoted by k(G), is the number of distinct spanning trees of the 

graph. 
If a graph G has n vertices, number them 7,2, —, n. The adjacency matrix of G, denoted by A (G), is an nxn (0,1) 

matrix with a 7 in the (ij) position if and only if there is an edge joining vertex / to vertex/. 
For any vertex i, the degree of i, denoted by deg i, is the number of edges that are joined to /. Let D(G) be the 

nxn diagonal matrix whose (ij) entry is deg i. 
We are now able to state a quite remarkable theorem, attributed in [2] to Kirkhoff. For a proof of this theorem, 

see [1 ] , page 159, or [2 ] , page 152. 
For any graph G, k(G) is equal to the value of the determinant of any one of the n principal (n - 7j-rowed 
minors of the matrix D(G) - A(G). 
As a simple example to illustrate this theorem, consider the graph G: 

A(G) 

and thus 
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Each of the four principal 3-rowed minors of D(G) - A(G) has determinant 3. The 3 spanning trees of £ are 

Q> -CD 

The relevance of these ideas to the title sequence will be established after making one more definition. 
For n > 3, the /7-wheel, denoted by Wn, is a graph with n + 1 vertices;/? of these vertices lie on a cycle (the rim) 

and the (n + 1)st vertex (the hub) is connected to each rim vertex. 

Wo W> 6-

Theorem. k(Wn) = L2n-2. 

Proof Number the rim vertices 7,2f - , n; the hub vertex \%n + 7. Each rim vertex / has degree 3; it is adjacent 
to vertices/- 7 and i+1 (modn) and to vertex n+ 1. The hub vertex has degreen and is adjacent to all other verti-
ces., Thus 
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D(Wn)-A(Wn) 

-1 -1 -1 

To compute k(Wn), any /?-rowed principal minor will do. So delete row and column n + 1. Then we have, by pre-
vious results: 

k(Wn) = detAn = L2n-2. 

This result can be found in [4] and in [7 ] , but in neither instance is the number expressed explicitly in terms of 
the Lucas numbers. In [7 ] , the formula for k(Wn) is given by: 

while in [4] the result is expressed: 

kMn) = F2n+2-F2n-2-2. 

Readers familiar with Fibonacci identities will have no trouble verifying that both of these expressions are equiva-
lent to the value given in the theorem. 

D. GEPJERALIZiiG TOTAL UNIMODULARITY 

A matrix M is said to be totally unimodular if every non-singular submatrix of M has determinant +1. Since the 
individual entries are 1x1 submatrices, they must necessarily be 0, ±1. The following theorem, found in [3 ] , pro-
vides sufficient conditions for total unimodularity: 

LetM be a matrix satisfying the following four conditions: 
(1) All entries of M are 0,±1. 
(2) The rows of Mare partitioned into two disjoint sets T-j and T2. 
(3) If any column has two non-zero entries of the same sign, then one is in a row of Tj and the other in a row of T2. 
(4) If any column has two non-zero entries of opposite sign, then they are both in rows of Tj or both in rows of 

T2. 
Then M is totally unimodular. 
This result usually includes the additional condition that there be at most two non-zero entries per column; this, 

however, is actually a consequence of conditions (3) and (4). 
We are thus motivated to consider the class M of matrices which satisfy conditions (1), (2), and (3), but not (4). If 

M e M, then as an immediate consequence of (3), we see that there are at most four non-zero entries in any column 
of M; at most two non-zero entries (with opposite sign) in rows of 7"/, and at most two non-zero entries (with oppo-
site sign) in rows of T2. 

It is then natural to define the subclasses: M" c M c M, where any matrix in M'satisfies conditions (1), (2), 
and (3) and has at most three non-zero entries per column; any matrix in M"satisfies (1), (2), and (3), and has at 
most two non-zero entries per column. An obvious problem is to find the maximum determinantal value of an nxn 
matrix in any one of these three classes. This problem is completely solved only for the class M"; the following 
theorem appears in [6 ] : 

If M is any/?x/7 matrix in the class M", then detM <2^n/2. Moreover, for each/? > 1, there \s an nxn matrix in 
M" whose determinant achieves this upper bound. 

The title sequence is relevant in considering the class M l For any k > 1, let /^ be the kxk identity matrix, and 
define J^ to be the kxk matrix with Ts on the diagonal, —/'s on the super-diagonal, and a - / in the lower left-hand 
corner. That is, 

/ - / 
/ - 7 

Jk = 

-1 

Then for n even, say n=2k, we can define the nxn matrices Hn and Gn as follows: 
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Ik -Jk 
Jk Ik Gn = 

' Ik 0 ' 

-Jk >k I 

Notice first that Hn e M'. Now since det Gn = 1, we have: 

= det(lk + JlJk) . 

But the (i,j) entry of JkJk is simply the inner product of the ith and jth columns of J^ It is thus not difficult to 
verify that 

Ik + JkJk = Ak, 

where Ak is the fundamental matrix of this paper. We have thus verified the following result: 
For n even, there is an nxn matrix in M with determinant Ln-2. A comparable result for odd n is proved in [5 ] . 
For n odd, there is an nxn matrix in M with determinant 2Fn - 2. It is my present conjecture that, for any given 

n, these determinantal values are the maximum possible for an nxn matrix in the class Af', or in the class M. 
Finally, it should be noted that totally unimodular matrices occur naturally in the formulation of a problem in 

optimization theory known as the transportation problem. In [6 ] , it is shown that matrices from classM arise in a 
discussion of the two-commodity transportation problem. 
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^kkkkkkk 

detHn = det(HnGn) = det \ik+Jfrk - 4 


