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The winter 1973 issue of the California Mathematics Council Bulletin carried an article under the title 'Idiot's 
Roulette." It discussed a counting-out puzzle, in which N people stand in a circle surrounding an executioner, who 
goes around and around the circle, shooting every second person as he counts. The problem is to determine the 
"safe" position, X, as a function of N. That is-which will be the last person left, according to the original number-
ing? An intuitive solution was presented, developed by looking for patterns, and the author asked for further com-
ments on possible proofs. 

The problem is a special case of a more general counting-out problem I had been playing with the previous fall, 
although in a somewhat less bloodthirsty fashion, -and the analysis which provides an iterative solution for the gen-
eral case incidentally yields a closed-form solution for the special case where the countoff spacing = 2. 

The general problem: Given /I/ places around the circle and a countoff spacing = C, such that every Cth place drops 
out, the count continuing around the circle until only one place is left, -which of the numbers 1 to N will be the 
last place L ? 

Assume the count " 1 " starts with place number 1. A different starting point simply rotates the problem around the 
circle, changing nothing essential. This seemingly trivial observation, however, provides a key to the analysis and solu-
tion of the problem. So let us consider what happens if we start the count at some other number, say atJ+1 instead 
of 1. This is equivalent to rotating the problem J places around the circle, so the game would end at L + J instead of 
L, unless! +J> N, in which case the modular nature of our numbering makes the last place L+J- N. 

Now return to the original problem. The count starts at place number 1, with countoff spacing C and N people. 
Call the solution for the last place winner L/sj. (For simplicity in the following discussion, we shall restrict ourselves 
to the case where N > C - 2. See footnote 1 for more complete analysis.) /./y is a function of C and N, Now con-
sider the problem for the same countoff spacing C, but with one more person in the circle. After our first loser is 
counted out at place C, this reduces to a circle of N places in which the count starts at C + 1. So L^+i = Lf^ + C, un-
less Z./v + C > N + /, in which case we have 

LN+1 = LN + C-(N+1). 

The table on the following page shows the situation, for example, for C = 2, and several values of N. 
I shall now introduce some terminology which will help us develop an iterative solution for the general problem. 

Noting that, for a given C, each time we add a place to the circle we add C to the old solution, write the solution in 
the form L/y = CN - l/y, since some integer //y certainly must exist which will make the statement true. (Example: 
In the table, where C = 2 and N = 4, L4 = 2(4) - 7, and l4 = 7. For N = 5,6, and 7 also, lN = 7. For N = 8, how-
ever, this is no longer true. Ig = 15.) 
-1 

If C = 1, the problem is tr iv ial , wi th £.N = N for all N. Sf C> 1, the general statement becomes: 

L N + 1 = L N +C- TN(N+ 1) and / N + 1 - / N + 7"N (N + 1), where TH = 
IM + 1 \ 
N + 1 J 

For N > C — 2, 7 N must be either 0 or 1 , and the analysis sn the article holds completely. For small A/, however, 
some of the S values generated may not actually be used, wi th the general statement being: If / ^ = S& , 

'lM+1 = Sk+T N 

For example, if C = 4, S = \3,5,7, 10, 14, 19, 26, — \ . Ix = Sx = 3; l2 = Sd = 7, since 

Similarly, for C = 7, S= I 6,8,10,12,15,18,22,26,31,37, - I 1, = St=6; l2 = S4=12;l3=S^=18;/4=S8=26;l5=S9=31. 
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K 
4 
5 
6 
7 
8 
9 

LN 

1 
3 
5 
7 
1 
3 

HS/+1 

3 
5 
7 
1 
3 
5 

(C = 2) 

(7 + 2 - 8 ) 

(1) 

The problem now is to find the appropriate //y such that £/\/ = CN - //y, where / < I/y <N. 
We can restate the condition that CN - //y<N to obtain 

IN N < 
C- 1 ' 

Next look at the statements about /./v-f / = C(N + 1) - l[\i+i: If 

(2) LN + C < N+1, LN+1= LN + C = CN-IN + C = C(N+1)-IN . 

Thus, if L/y + C < N+1, lpj+1 = / /v, while if 

(3) LN + C>N+1, LN+1 = LN + C-(N+1) = C(N + 1) - (lN +N + 1) and lN+1 = IN + N+1 . 

Call S the set of distinct subtraction integers, where IN^IN+V an d ! e t M De t n e s e t °^ (N + D values at which this 
occurs. Then we can restate, from (3), S^+i = Sk + M^; and also rewrite the inequality 

LN + C = CN ~Sk + C = C(N+1)-Sk = CMk -Sk > MK , 

from which we obtain: 

(4) Mk > 
C- 1 

Similarly, rewriting (1) we have 

Mk-1 < 
Sk 

C- 1 

Combining this statement with (4), we obtain 

(5) Sk 

or 
Sk 

C- 1 

< Mk < Sk 

C-1 K C-1 

which can be solved in terms of the greatest integer function: 

Sk 

+ 1 , 

(6) Mk C- 1 
+ 1, 

(where fxj is defined as the greatest integer < x ) . 
For a circle where N = Mk places, then, our last place winner 

L = CMk-(Sk + Mk). 

Since Sk+i =Sk + Mk, we have the following iterative formula for subtraction integers: 

(7) Sk+1 ~ Sk + 
sk 

C- 1 
+ 1 

C- 1 sk + 1. 

To obtain a starting point for the set of S values, we note that, for N = 1, L/\/= 1, whatever the value of C. Hence 
1 = C - Si , and Sj = C - 1. Given a particular C, we can generate a set of subtraction integers1. For example, for 
C = 3: 

Si - 2; sk+1 -

and the set of S values is 

lsk + 1, 

| 2,4,7, 11, 17,26,40,61, - j 
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To apply the formula LN = CN - Sk, we simply choose the proper Sk so that2 

/ < LN < N. 

(Uniqueness of Sk can be shown readily from the equivalent condition that (C-1)N < Sk <C/\/J 
For the very special case of C = 2, the solution reduces neatly to a closed form, because 

- C - = 2 
C-1 ' 

an integer. We can show by mathematical induction that for C =2, 

Sk = 2k-1, 
since 

Sj = C-1 = 21 - 1 , 
and 

Sk+i = 2Sk + 1 = 2(2k -1)+1 = 2k+1 - 1. 

Therefore we can write: If 

(8) C = 2, L = 2N - (2k - 1) and / < 2N - (2k - 1) <, N . 

By rewriting the inequality in (8) we can obtain an explicit solution for k in terms of N. We have 

2k - 1 + 1 < 2N ; 

hence 2k <2N, and k < / + log2 N. We Also have 

2N < N+2k - 1 ; 

therefore N < 2k - /, and N <2k. Thus log2N<k. Combining the inequalities: 

(9) log2N < k < 1+log2N, so k= 1 + [log2N] . 

An explicit formula can therefore be written for L 

(10) L = 2N-(21+[lo^N] - 1) = 1+2(N~2 [log*N] ) 

and the roulette player can avoid the executioner if he quickly counts how many share his possible fate and uses his 
fingers to calculate powers of 2! 3 

I tried a number of computer runs to obtain M^ and S^ sets for various values of C. The resulting sequences of n u m -
bers looked hauntingly familiar, as though they ought to be expressible in some more elegant fo rm. It might be in-
teresting to fol low up on this. 
3 

This paper also provides a solution for the Population Explosion problem of Brother Alfred Brousseau, The Fibon-
acci Quarterly, Vo l . 6, No. 1 (February 1968), pp. 5 8 - 5 9 . 


