Now if \(x \equiv 0 \pmod{p} \), \(F_x(n) \equiv 1 \pmod{p} \) for all \(n \), by the definition of \(F_x(n) \).

If \(x \not\equiv 0 \pmod{p} \), from Lemma 5 there exists a number \(\alpha \) such that \(F_x(\alpha) \equiv 0 \pmod{p} \), we assume that \(\alpha \) is the least such number, and \(\alpha > 1 \) since \(F_x(1) = 1 \) for all \(x \). It can be shown inductively that \(F_x(n+\alpha) = sF_x(n) \pmod{p} \) for all \(n \), where \(s = F_x(\alpha + 1) \pmod{p} \), and \(s \neq 0 \) since \(s \equiv 0 \) would imply \(F_x(\alpha - 1) \equiv 0 \pmod{p} \). Then if \(F_x(r) \equiv 0 \pmod{p} \), there exists \(r' \) such that

\[
r' = r \pmod{\alpha}, \quad 0 < r' < \alpha, \quad \text{and} \quad F_x(r') \equiv 0 \pmod{p}.
\]

By the definition of \(\alpha \), \(r' < \alpha \) is absurd, therefore \(r' = \alpha \).

Let \(P \) be prime and \(p \) a prime factor of \(F_x(P). \) Then

\[
F_x(P) \equiv 0 \pmod{p} \quad \text{and} \quad x \not\equiv 0 \pmod{p}
\]

Thus \(P = 0 \pmod{\alpha} \) and since \(P \) is prime, \(P = \alpha \). Let \(p' \) be either \(p, p - 1, \) or \(p + 1 \), such that

\[
F_x(p') \equiv 0 \pmod{p}
\]

(from Lemma 3). Then \(p' \) is an integral multiple of \(P \) and the theorem follows.

I mentioned this result to Dr. P.M. Lee of York University and he has pointed out to me that Lemma 3 can be derived from H. Siebeck's work on recurring series (L.E. Dickson, History of the Theory of Numbers, p. 394f). A colleague of his has also discovered a non-elementary proof of the above theorem.

I am myself only an amateur mathematician, so I would ask you to excuse any resulting awkwardnesses in my presentation of this theorem and proof.

Yours faithfully,
Alexander G. Abercrombie

[Continued from Page 146.]

There is room for considerable work regarding possible lengths of periods. For various values of \(p \) and \(q \) we found periods of lengths: 1, 2, 8, 9, 17, 25, 33, 35, 42, 43, 61, 69.

GENERALIZED PERIODS

For various sequence types, it is possible to arrive at generalized periods. Some examples are the following.

\((p, p - 1): 2p - 2, 2p - 3, 2p - 3, 2p - 2, 2p, 2p + 2, 2p + 3, 2p + 2, 2p, \) where \(p \) is large enough to make all quantities positive.

\((p, p): 2p, 2p + 2, 2p + 1, 2p - 1, 2p, 2p - 1, 2p + 1, \) where \(p > 2 \), and many others.

\((p + 1, p): 2p - 1, 2p, 2p + 2, 2p + 4, 2p + 5, 2p + 4, 2p + 2, 2p - 1 \) for \(p > 3 \) (Period of length 9)

\(2p, 2p + 1, 2p + 5, 2p + 5, 2p + 5, 2p + 1, 2p - 3, 2p - 1, 2p - 1, 2p + 4, 2p + 4, 2p + 7, 2p + 3, 2p + 2, 2p - 3, 2p - 3, 2p + 2, 2p + 3, 2p + 8, 2p + 7, 2p + 4, 2p + 4, 2p - 1, 2p - 1, 2p - 3, \) for \(p > 24 \) (Period of length 26), and many others.

A schematic method was used which made the work of arriving at these results somewhat less laborious.

NON-PERIODIC SEQUENCES

In studying the sequences \((3,4),\) non-periodic sequences of a quasi-periodic type were found. They have the peculiar property that alternate terms form a regular pattern in groups of four, while the intermediate terms between these pattern terms become unbounded. This situation arises in sequences \((p, q)\) for which \(q \) is greater than \(p \).

As an example of such a non-periodic sequence in the case \((4, 7)\) the sequence beginning with 1,3,4, follows:

1, 3, 4, 37, 59, 124, 25, 17, 2, 6, 3, 27, 22, 93, 20, 34, 3, 13, 3, 35, 13, 99, 14, 58, 4, 31, 3, 58, 9, 148, 12, 121, 4, 72, 3, 129, 8, 312, 11, 279, 4, 178, 3, 317, 8, 751, 10, 663, 4, 466, 3, 819, 8, 1922, 10, 1687, 4, 1183, 3, 2074, 8, 4850, 10, 4249, 4, 2976, 3, 5211, 8, 12170, 10, ...

Note the regular periodicity of 3,8,10,4 with the sets of intermediate terms increasing as the sequence progresses.

The various types of non-periodic sequence for \((4, 7)\) are:

[Continued on Page 184.]