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LETTER TO THE EDITOR 
February 15, 1974 

Dear Dr. Hoggatt: 
I have discovered the theorem below and was advised to forward it to you as being the most suitable publisher, 

should it turn out to be original, 
Consider the function 

._2nH-1)(n+1)-3 

We make the convention that Fx(1) = 1 for all x. 
It is easily established that for all c the coefficient of (n) added to the coefficient of x in Fx(n+1) 

gives the coefficient of xx in Fx(n +2), and thus we have: 

xFx(n) + Fx(n + 1) = Fx(n + 2) , 

Ff(n) is the Fibonacci series. 
Theorem Any prime factor of FX(P), where P is prime,is congruent to ± 1 or 0 (mod P). (We assume P^2 since 

if P = 2 the theorem is trivial.) 
Lemma I For any 2, 

(s. + 1)(i+2) ... (2st) = (2)(6) - (4s. - 2). 

This is easily proved by induction. 
Lemma 2. The coefficient of x e in Fx(p) is congruent to the coefficient of x c in the binomial expansion of 

Ell 
2 + {^T)] (mod pi. 

where p is prime, and p #2. 
Since p$2, p is odd and Fx(p) is of order 

ilLthlELzl -AlLzl , jn x 

From Lemma 1 we have 

(i+1)(s.+2)- (29.) = (2)(6)- (42-2) 
S! £/ 

(p-(z+1))(p-(*+2)).~(p-2*) s (2p-2)(2p-6)~.(2p-(4n-2)L 4* \ 2 J \ 2 1 \ 2 l u 1 
e/ s! s! 

(mod p). But 

and by Fermat's Theorem 

4» = (&±L\™(matp) 

4- 1 \ (P-D 
+ l J = 1 (mod pi 
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moreover 

since 

would imply 

or 

P-1 

£±1 j 2 ^ 1 (mod p) 

(Pzl) 

(&±1 f 2 j =-1 (modp) 

( 1 ) = 4 ^ 2 ' s -1 (mod p) 

(>-m,., (mod p), 

applying Fermat's theorem again, and this gives 

2(P-V s _ / (mod p) 

which is absurd since p ?2. Thus 

4^ ^ IE±ly 2 ' (mod p), 

and so: 

(p-U + 1)(p-fa+2))-(p-2z) s / gj± \ ( ^ s 2
/ ' " \ T " ) ( 2JJ~ ~ g ) \ ^ T ~ -U~1)) 

/7??0£/ p) which is equivalent to the lemma. 
Lemma 3. Fx(p) = ±1 or 0 (mod p), where p is prime and p ^2. 
From Lemma 2, it follows that 

FX(P) - (x+^j1) 2 (mod p). 

Thus by Fermat's theorem, either 
x = - f ^ p J mod p 

in which case Fx(p)^0 (rnodp), or 

{FX(P)\2-1 = 0 (mod p) 

in which case Fx(p) =±1 (mod p). 

Lemma 4. { Fx(n) \2 - j Fx(n -V\{ Fx(n + D] = -xir>~1) for all /?. 
This is easily proved by induction on n using the relationship 

xFx(n) + Fx(n + 1) = Fx(n +2). 
Lemma 5. When x£0(modp), at least one of Fx(p), Fx(p - 1), Fx(p + 1) is congruent to 0 (mod p), 

where p is prime and p $2. 
It follows from Lemma 4, using Fermat's theorem, that 

{ Fx(p)\2-\ Fx(p - 1) } > J Fx(p + 1))=1 (mod pi 

Thus if Fx(p) £0 (mod p), by Lemma 3, 
\Fx(p)\2 = 1 (mod p) 

in which case 
\Fx(p-1)\\Fx(p + V\=0 (rnodp), 

and the lemma follows. c ' { ' 
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Now if x=0 (modpi Fx(n)=1 (mod p) for all n, by the definition of Fx(n). 
lix£0(modpl from Lemma 5 there exists a number a such that Fx(a) = O (mod p), we assume that a is the 

least such number, and a > 1 since Fx(1) = 7 for a l l * . It can be shown inductively that Fx(n +a)^sFx(n) (mod p) 
for all/?, where s = Fx(a+ 1) (mod pi and s ^ 0 since s = 0 would imply Fx(a- 1) = 0(mod p). Then if Fx(r)= 0 
(modpi there exists r' such that 

r' = r(modal 0 < /*' < a, and Fx(r') = 0 (modpi 

By the definition of a, /• '< a is absurd, therefore r'= a. 
Let P be prime and p a prime factor of Fx(Pl Then 

FX(P) = 0 (modp) and x £0 (modp) 
since, if x= 0 (modpi Fx(n) = 1 (modp) for all n. 

Thus P = 0 (mod a) and since P is prime, P = a. Let p' be either p,p - 1, or p + 1f such that 

Fx(p1 = 0 (mod p) 

(from Lemma 3). Then p' is an integral multiple of P and the theorem follows. 
I mentioned this result to Dr. P.M. Lee of York University and he has pointed out to me that Lemma 3 can be de-

rived from H. Siebeck's work on recurring series (L.E. Dickson, History of the Theory of Numbers, p. 394f). A col-
league of his has also discovered a non-elementary proof of the above theorem. 

I am myself only an amateur mathematician, so I would ask you to excuse any resulting awkwardnesses in my pre-
sentation of this theorem and proof. 

Yours faithfully, 
Alexander G. Abercrombie 

[Continued from Page 146.] ^kkkk^k 

There is room for considerable work regarding possible lengths of periods. For various values of p and q we found 
periods of lengths: 1, 2, 8, 9, 17, 25, 33, 35, 42, 43, 61, 69. 

GENERALIZED PERIODS 
For various sequence types, it is possible to arrive at generalized periods. Some examples are the following. 

(p,p - 1): 2p -2,2p- 3, 2p - 3, 2p - 2, 2p, 2p +2, 2p +3, 2p +2, 2pf where/? is large enough to make all quan-
tities positive. 

fa;p): 2p, 2p +2, 2p, 2p + 1,2p- 7, 2p, 2p - 7, 2p + 7, where p>2. 

2p - 1,2p + 7, 2p - 1, 2p +2, 2p, 2p + 3, 2p, 2p +2, where p>2, and many others. 
(p + lp): 2p- 1,2p,2p+2,2p+4,2p+5,2p+4,2p. + 2,2p,2p- 7 fpr /?>3. (Period of length 9) 

2p( 2p + I 2p+5, 2p+5, 2p+5, 2p + 7, 2p, 2p ~3f2p~ 1, 2p - I 2p+4, 2p +4, 2p + 7, 2p+3f 

2p +2, 2p -3f2p- 2, 2p - 3, 2p +2, 2p+3f 2p+8t 2p + 7, 2p +4, 2p+4t 2p -1,2p- 7,2p - 3, 
for p>24 (period of length 26), and many others. 

A schematic method was used which made the work of arriving at these results somewhat less laborious. 
NON-PERIODIC SEQUENCES 

Sn studying the sequences (3,4), non-periodic sequences of a quasi-periodic type were found. They have the pecul-
iar property that alternate terms form a regular pattern in groups of four, while the intermediate terms between these 
pattern terms become unbounded. This situation arises in sequences (p,q) for which q is greater than p. 

As an example of such a non-periodic sequence in the case (4,7) the sequence beginning with 1,3,4, follows: 
1, 3, 4, 37, 59, 124, 25, 17, 2, 6, 3, 27, 22, 93, 20, 34, 3, 13, 3, 35, 13, 99, 14, 58, 4, 31, 3, 58, 9, 148, 12, 121, 4, 
72, 3, 129, 8, 312, 11, 279, 4, 179, 3, 317, 8, 751, 10, 663, 4, 466, 3, 819, 8, 1922, 10, 1687, 4, 1183, 3, 2074, 8, 
4850, 10,4249,4,2976,3,5211,8, 12170, 10,.... 
Note the regular periodicidity of 3,8,10,4 with the sets of intermediate terms increasing as the sequence progresses. 

The various types of non-periodic sequence for (4,7) are: 

[Continued on Page 184.] 


