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1. DISTRIBUTIVE LATTICES 

Our object is to investigate a certain distributive lattice Fi closely related to the Fibonacci numbers. First we will 
review some basic properties of distributive lattices and discuss some general combinatorial problems associated with 
them. Thus this paper can be regarded as a semi-expository survey of some combinatorial aspects of distributive 
lattices. 

In order that the combinatorial invariants we will be considering are finite, we need to restrict ourselves to dis-
tributive lattices L satisfying the following property: 

(W) L is locally finite with a unique minimal element 0, and only finitely many elements of any given rank (or 
height). 

By locally finite, we mean that every segment [x,y] = | z\x < z < y I of £ is finite. The rank k of an element 
x e L is the length of the longest chain between 0 and x. In any distributive lattice, if the length k of the longest 
chain between two elements x and y is finite, then the length of any saturated (or unrefinable) chain betweenx and 
y is also k. A distributive lattice satisfying property (W) will be called a W-distributive lattice. 

Recall that an order idealof a partially ordered set P is a subset / c Psuch that if x e / a n d y <x, then y e / . By a 
fundamental theorem of Garrett Birkhoff [2, Ch. I l l , §3] , corresponding to every ^/-distributive lattice L is a par-
tially ordered set P, uniquely determined up to isomorphism, satisfying the following three properties: 

(i) Every element of P is contained in a finite order ideal of Pf 

(ii) P has only finitely many order ideals of any given finite cardinality k, 
(iii) L is isomorphic to the set of finite order ideals of P, ordered by inclusion. 
Conversely, given any partially ordered set P satisfying (i) and (ii), the lattice of finite order ideals of P (ordered 

by inclusion) is a ^/-distributive lattice. A partially ordered set satisfying (i) and (ii) is called a W-orderedset. The 
correspondence between MZ-ordered sets P and ^-distributive lattices L is denoted L = J(P). P is isomorphic to the 
sub-ordered set of L consisting of all the join-irreducible elements of L If / is a finite order ideal of/3, then the car-
dinality j / | of / is equal to the rank of / in J (Pi 

If P is a ̂ /-ordered set, then we define a P-partition ofn [18] to be an order-reversing map a : P-AO, 7, 2, — j 
satisfying 

^o(x) = n. 

xeP 

(In particular, only finitely many elements x of P satisfy o(x) > 0.) The statement that a is order-reversing means 
that if x < y in P, then o(x) > o(y). The parts of oare the non-zero values o(x) (counting multiplicities). Leta(m,n) 
denote the number of /^-partitions of n with largest part < m. Since P is a W-ordered set, it follows easily that a(m,n) 
is finite. St can be shown that a(m,n) is the number of order ideals of cardinality n in the direct product P x m, 
where m denotes an /77-element chain, 

rn = { 12, . » , / ? i | . 
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Furthermore, let a(n) denote the total number of/'-partitions of n. Hence 

Mm a(m,n) = a(n), 

and a(n) is the number of order ideals of cardinality/? in the partially ordered setPxN, wherej\l denotes the natural 
numbers, 

In particular, a(1,n) is equal to the number of order ideals of cardinality n in P (equivalent^, the number of ele-
ments of rank n in J(P)), since PXJL^ P. In fact, there is a one-to-one correspondence o «* KG) between order-
reversing maps o : P -> j 0,11 satisfying 

] j j o(x) = n, 
xGP 

and order ideals KG) of P of cardinality n, viz., 

KG) = {X\G(X) = / J . 

The number a(1,n) is denoted jn(P) or simply/^. If P is finite, then the total number of order ideals of P is denoted 
j(P), so j(P)=\/(P)\. 

If L = J(P) is a /^-distributive lattice and / e L, then define e(l) to be the number of saturated chains between 0 
and /. (This number is obviously finite.) It is not difficult to see that e(l) is equal to the number of order-preserving 
bijectionsa: / - * £ , where \l\ = k. In fact, such a bijection a corresponds to the saturated chain 

(1) 0 c G'Ul) c o~1(2) c ... c o'Uk). 

Thus a saturated chain between 0 and / corresponds to a permutation cr1 (1), o-l(2), —, oml(k) of the elements of /. 
This provides a systematic basis for studying relationships between sequences and lattice paths which occur fre-
quently in combinatorial theory and probability theory. 

2. EXAMPLES 

By now the reader may be overwhelmed by a plethora of definitions and anxious to see the point of them. We will 
give several examples, some of which will be used later, to illustrate the significance of the above concepts. 

Example 1. Let P = N, the natural numbers with their usual ordering. Then a /'-partition of n with largest part < m 
is just an ordinary partition of n with largest part < m [8, Ch. 19]. As is well-known, 

Y, a(m,n)xn = I I (1-x'F1 . 
n=0 M 

Similarly a(n) is equal to the total number of partitions of /? (usually denoted p(n)), with the corresponding gen-
erating function 

E a(n)xn = 5 (1 -x1)-

n=0 

To tie in with subsequent results, we state the trivial formulas 

(2) E o(0 = I E e(l)2 = I 
\i\=k | / | « * 

where the sum is over all order ideals / of]\[ of cardinality k. 
Example 2. Let/3 be the disjoint union of two copies of JJr denoted P-N + N = 2N. Thus J(P) is isomorphic to the 

direct product/j/x/1/ =J\f . Here the numbers a (m,n) are not so significant (in particular, 
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£ a(m,n)xn = 0 (1-x'F2) . 
n=0 '~1 

We will rather discuss the numbers e(l), I <EJ(P). For any MZ-ordered set P and l^J(P), let /x, /2/ - , lr be the ele-
ments of J(P) which / covers, i.e., // < / and no l'^J(P) satisfies // < / ' < / . It follows that 
(3) e(l) = e(l1) + e(l2) + - + e(lrl 

For the lattice N under consideration, (3) is precisely the "addition formula" for constructing Pascal's triangle. 

The numbers e(l) are just the binomial coefficients, and in analogy to (2) we have the well-known formulas 

More precisely, for any I <EJ(P) the segment [OJ] has the form 
\ + b\ 
b ) 

a_±j_ x b + 1, and e(l) 

Uo\Na_±J x /? + 1 = J(a+b). Thus from (1), we have that 
/ a+h 
\ b 

is equal to the number of order-preserving bijections o : §_ + b -• a + b. The map a is determined by the image of a_ 
(o rM , so we get the usual combinatorial interpretation of 

( • : • ) 
as the number of combinations ofa + b things taken b at a time. 

The above discussion motivates defining a generalized Pascal triangle to be a ^/-distributive lattice together with 
the function e. The entries ell) of a generalized Pascal triangle have three features in common with the ordinary bi-
nomial coefficients: 

(a) They can be obtained by an additive recursion, 
(b) They can be interpreted as counting certain types of permutations or sequences. 
(c) They can be interpreted as counting certain types of lattice paths in Euclidean space, since every finite dis-

tributive lattice can be "imbedded" in a Cartesian grid of sufficiently high dimension. 
To illustrate the lattice path interpretation (c), consider the well-known problem of counting the number of lat-

tice paths in an (n+ 1)x (n + 1) array of lattice points from a fixed corner to the opposite corner, such that the path 
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never goes below the diagonal. For instance, in 
the4x4 case we have as one path the following: 

The total number in the 4x4 case is the number 
of maximal chains in the following distributive 
lattice L: 

Here L = J(2xH In the general (n + 1) K 
(n + 1) case, the appropriate distributive lattice 
is L = J(2xn). The number of maximal chains 
m J(2xn) is known to be the Catalan number 

1 
n + 1 (?)• 

Many other known lattice path problems can 
be formulated in a similar context We give a 
further example, arising from a lattice path 
problem considered by Frankel [6 ] . Here if we 
take/3to look like 
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then the generalized Pascal triangle corresponding 
to JfP) looks like 

The entries e(l) are all Fibonacci numbers. 
Example 1 Let P = N2. Then the lattice J(P) is denoted fand is called Young's lattice (cf. Kreweras [11]). fcan 

also be regarded as the lattice of all decreasing sequences X= (Xu \ , — ) (with \ > \ > —>0) of non-negative 
integers X;, all but finitely many equal to 0, ordered coordinatewise. Hence X may be regarded as a partition of |X| = 
EX/. Thus if X = fXj, \ , - } e Fand ji= (i±u jit,, - ) e 7̂  t n e n ^ < M if and only if X; < jit/ for all / = 7,J?;-. 
From this it follows that j^(T) = plk), the number of partitions of k The lattice T is intimately connected with the 
theory of plane partitions and the representation theory of the symmetric group (cf. Stanley [19], and the refer-
ences cited there). We will merely state some of the remarkable properties of the lattice T. 

First, we have the beautiful formulas, originally due to MacMahon [13, Sect 495], 

aMxn = n d-x'r Y, a(mfn)xn = n (1-x*)-'»ln<ltm)t ^ 
n=0 '~1 n=0 

If X e T and |X| = k, then the number e(X) is traditionally denoted fx and is equal to the degree of the irreducible 
representation of the symmetric group Sj< corresponding to the partition X. By either group-theoretic or combina-
torial means, the following formulas can be proved: 

(4) tk, 
|\|=Ar 

k! 
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Here t^ is the number of elements TT eS^ satisfying IT2 = I It is most easily computed from the recursion 

to = ti = I tk+1 s tk+ktk-i, k > I 

The generalized Pascal triangle associated with T looks as follows: 
l 5 9 5 10 16 10 5 9 5 

Let us consider the problem of computing the 
individual efkj's, X e T. The element X = (ku 

\ , — ) of T is represented schematically as an 
array of left-justified squares, with A; squares in 
the ith row. This array is called the graph of X 
For instance, if X = (4,3,2,2,0,0, .»•), then the 
graph of X is 

A maximal chain from 0 to X in T corresponds 
to filling in the squares of the graph.of X with 
the integers 1, 2, —, |X|, such that these integers 
are increasing in every row and column. Such an 
array is called a Young tableau of shape X For 
instance, one of the Young tableaux of shape 
(4,3,2,2) is 

1 

z 

6 

7 

3 

b 

9 

11 

4 

8 

10 
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With each square S of the graph of a partition 
X, we associate an integer h(S)f defined to be the 
number of squares directly to the right or di-
rectly below S, counting S itself exactly once. 
This number h(S) is called the hook length of S. 
The hook lengths for X = (4,3,2,2) are given by 

A basic result of Frame, Robinson, and Thrall [5] states that 
efX) = k!/h(SJh(S2)-h(Sk), 

where |X| = k and £ / , —, S^ are the squares in the graph of X-
Formulas (4) can be stated in terms of Young tableaux as follows: 
(i) The number of Young tableaux with k squares is t^. 

(is) The number of ordered pairs of Young tableaux of the same shape and with k squares is kl 
123 12 13 1 

For instance, when k = 3, we have the follow- 3 2 2 
ing t3 = 4 Young tableaux: 3 

123 123 12 12 12 13 1 1 13 12 13 13 
We also have the following 3! = 6 pairs: 3 3 3 2 2 2 2 3 2 2 

3 3 
In view of (i) and (ii), it is natural to ask for an explicit one-to-one correspondence n-+ (P,Q) between permuta-

tions 77 of 1, 2, —, k and ordered pairs (P,Q) of Young tableaux of the same shape and with k squares, such that if 
7T -> (P,Q), then ir1-* (Q,P) (so that TT2 = 1 if and only if TT-> (P,P) for some P). Such a correspondence was discov-
ered in a rather vague form by Robinson [14] and later more explicitly by Schensted [16]. Further aspects of this 
correspondence were considered by Schutzenberger [17] and Knuth [9 ] , [10, §5.2.4]. We refer the reader to these 
sources for the details. 

It is natural to try to extend the results about T = J(N2) to the lattices J(l\[l'), r>2. Unfortunately, all the "ex-
pected" results turn out to be false, and very little is known about the numbers a(m,n) and e(I). 

Example 4. Our final example in this section is when P is the universal binary tree T_2. This partially ordered set is 
characterized by the property that it is a ^/-ordered set with 0 such that every element is covered by two elements, 
and every element except 0 covers one element. # 

7 

5 

3 

I 2 

6 

4 

2 

1 

3 

1 

1 
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A finite order ideal of T2 (or an element of J(T2)) is a plane binary tree. The number/^ of order ideals of T2 of 
cardinality k is the Catalan number 

k+1 \ k } -
We thus have two order-theoretic interpretations of the Catalan numbers: (a) as the number of maximal chains in 
J(2_ x k), and (b) as the number of elements of rank k in J(T2). We state a third interpretation, viz., (c) 

-J-(2k \ k+1 \ k } 
is the total number of elements in J(S(k - 1)1 where S(P) denotes the set of segments (or intervals) of P, ordered 
by inclusion*. Thus the Hasse diagram for S(k- 1) looks like the "top half" of the distributive lattice k-1 x k-l 
For instance, when k = 4 we have S(3] and J(S(3J) as follows: 

S ( 3 ) 

J ( S ( _ 3 ) ) 
We leave as an exercise for the reader the result that the number of maximal chains in J(S(k_)) is 

(2k ~ 1)(2k-3)2(2k-5)3-3k-11k 

There is an interesting way to see that the number of maximal chains in J(2_ x k) is equal to the number of order 
ideals of S(k - 1). Draw the Hasse diagram of J(2_ x k), pick a maximal chain C, and rotate the Hasse diagram 90° 
so there is one vertex on top and k- 1 on the bottom. Remove the "bottom zigzag" of this rotated Hasse diagram. 
Then the resulting diagram H is the Hasse diagrams of S(k - 1). Let / be the smallest order ideal of / /which con-
tains all the elements in the intersection C n H. It is easily seen that this correspondence C -> / between maximal 
chains C in J(2_ x k) and order ideals / of H s S(k- 1) as a bijection. As an example, we take k = 5 and C as shown 
at the top of the following page (indicated by wiggly lines). 

The corresponding order ideal of S(4) con-
sists of the labeled elements on the right. 

*There are two other lattices associated with the Catalan numbers, due to D. Tamari [21] (first published in [ 7 ] ) 
and G. Kreweras [ 1 2 ] , but since these lattices are not distributive we wi l l not discuss them here. 

/0\X 
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The above correspondence between order ideals and maximal chains generalizes 
straightforwardly to show that if L = J(P) is any finite planar distributive lattice 
(equivalently, P has no antichains of cardinality > 3), then the number of maximal 
chains in L is equal to the number of order ideals in the partially ordered set obtained 
by rotating the Hasse diagram of L 90° and removing the "bottom zigzag." We state 
without proof one amusing consequence of this observation, based on a problem of 
Berlekamp [22, p. 341, problem 3] (see also Carlitz, Roselle, and Scoville [4]). 
Write down the graph of some partition X. Let S be a square of this graph with coor-
dinates (ij) (i.e., S is in the Ith row and/t /? column). Then the squares (i',j') satisfying 
/ ' > j and / ' > j form the graph of a partition id (SI In the square S write the number 
of elements v of the Young lattice T satisfying v <{JL. For example, if X= (3,3,2,1), 
then we get the array shown above right. The entry 9, for instance, corresponds to 
ju = (2,2,1) with the nine partitions v < ju given by (2,2,1), (2,1,1), (2,2), (1,1,1), 
(2,1), (2), (1,1), (1), 0. Now "border" the bottom and right of this array with a rook*-
wise connected line of squares containing the integer 1. Thus for the above array, we 
get the array shown in the Sower right. For any entry in this new array, consider the 
largest square of which it is the upper left-hand corner. For instance, the entries 5 
(either one), 9, and 28 give the square arrays 

5 2 9 3 1 28 9 3 
2 1 5 2 1 14 5 2 

2 1 1 5 2 1 
Then we have the following result: The determinant of each of these square arrays is 
equal to one. 

We now return to the partially ordered setj"2. Here no simple expression for the generating function 

28 

; 14 
j 5 

1 2 

9 

5 

2 

3 

2 

28 

14 

5 

2 

1 

9 

5 

2 

1 

1 

3 

2 

1 

1 

1 

1 

1 

£ afnlx" 
n=0 
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Is known. On the other hand, it is easy to show (we will not do so here) that 

I ] eC> = k! • 
l /Nr 

The numbers e(l) can be evaluated in a manner analogous to eM, X e T. In fact, if P is any finite rooted tree (con-
sidered as a partially ordered set) and* eP, define 

h(x) = card | y\y <~ P, y > x j. 

Then an easy induction argument shows 

e(P) = k!/h(x1)h(x2)-h(xkl 

where P = \k\ and the *;'s are the elements of P 
For example, see the array on the right So for this 
partially ordered setP, 

e(P) = 91/9.4.4.3.2-1-1-1-1 = 420. 
A discussion of these and related results may be 
found in [18, §22]. 

The lattice J(T2) is closely connected with the 
well-known problem of parenthesizing a string of k 
letters (say*^). A bibliography of this problem is 
given by Brown [3 ] , though the following lattice-theoretic interpretation appears to be new. We define an order re-
lation A2 on all finite parenthesized strings of x'$ (excluding the void string) as follows: Given two strings 5X and£2, 
then Sx < S2 if and only if S2 can be obtained from Sx by substituting for each occurrence of x in St some paren-
thesized string S (which depends on the particular* in St being substituted for). For instance, \fS1 - (xx)fx(xx)) 
and S2 = (x(xx))(((xx)x)(xx)l thenS, <S2 since we have substituted for the fiver's in St the strings*,**, (XX)X, 
x,x. The order relation A2 looks as follows: 

The basic result about A2 is that it is a distributive lattice isomorphic to J(T2). In fact, the join-irreducible ele-
ments of A2 are elements like x(((xx)x)x) which are build up f rom* by multiplying successively b y * either on the 
left or on the right. Thus for instance the following order ideal of T2 corresponds to the elements 

a6 = a4a5 = (a1a2)(a1ad) = ((xx)(x(xx)))((xx)((xx)x))) of A2 • 
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x - a , 

x2=a, 

a , a 2 = a 4 a i a 3 = Q 5 

ontrast to the difficulties involved in extending results about J(N2) to J(ff), our results on J(T2) easily gen-
eralize to J(T ) , where T is the universal r-ary tree (whose definition is evident). For instance, 

Ik k(r -ZJfTJ [kk ) - E e(l) = hr-(2r- 1)(3r- 2) -((k- 1)r~(k-2)). 
i\=k 

Moreover, the numbers e(l) can be computed \wJ(Tr) in exactly the same way as for J(T21 since / is a rooted tree. 
Finally if Ar denotes the set of all finite strings of x's parenthesized in accordance with an r-ary operation and 
ordered analogously to A2, then Ar = J(Trl 

3. COVER CHARACTERIZATIONS 
Most of the distributive lattices we have been considering have an interesting property which we call a "cover char-

acterization." A ^-distributive lattice L is said to have a cover characterization if there exists a function f(k,n) such 
that if an element x of L of rank k covers/? elements, then* is covered by f(k,n) elements. If f(k,n) is independent 
of k (in which case we simply write f(n)), then we say that L has a strong cover characterization. The function f(k,n) 
(or f(n)) is called the cover function of L 

It is easy to see (by inductively building L from the bottom up) that there can be at most one distributive lattice L 
(up to isomorphism) with a given cover function f(k,n). It is not difficult to verify that the following lattices have 
the Indicated cover function. L 

g = J(rN) 
J(N2)r = J(rN2) 

2r = J(r1) 
J(Trf = J(sTr) 

Hk.n) 
r 

n + r 
-n + r 

(r- 1)k + s 

On the other hand, the lattices JW), r > 2, do not have a cover characterization. 
An interesting problem is to determine which functions f(krn) can be the cover functions of a distributive lattice. 

For instance, given a function a(n), for what functions h(k) is f(n,k) = a(n) + b(k) a cover function? The following 
proposition is useful in ruling out various functions. The proof is left to the reader. 

Proposition 1. Let L be a W-distributive lattice such that u(ij) elements of rank / cover exactly/ elements, and 
v(ij) elements of rank /are covered by exactly/ elements. Then for all i>j> 0, 

k=0 k=0 
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(Each sum has only finitely many non-zero terms.) • 
Thus, for instance, using Proposition 1, it can be shown that if L is a W-distributive lattice with the cover function 

f(n) = an+b, then u(5,1) = -(b/3)(a + 1)(2a3 - 2a2 - 3). Hence u(5,1) < 0 if |*| > 2, so in this case L does not ex-
ist. We in fact conjecture that if L has a strong cover characterization with a non-decreas/ng cover function ffn) (i.e., 
ffi + i)> f(i)), with HO) > 0, then f(n) = a or ffn) = n+a. 

Oii@ positive result is the determination of all finite distributive lattices with a strong cover characterization. 
Proposition 2. If L is a finite distributive lattice with a strong cover characterization, then L is a boolean algebra 2^. 
Proof. Suppose L is a finite distributive lattice with a cover function ffn). Let r be the number of elements cover-

ed by the top element 1 of L Then f(r) =: 0. Let / be the meet of all elements covered by the top element 1 of L 
Then / is covered by r elements. Suppose / covers s elements, so f(s) - r. Under the assumption s>0 , we will show 
that there is an element T > / s u c h that /'covers s elements. Then / ' must be covered by r elements, which is impos-
sible since the join of these r elements would lie above 1. Hence s = 0, and L is a boolean algebra. 

Assume s > 0. Let L = J(P). If M is the set of maximal elements of P, then / is the order ideal P - M. Since s > 0, 
i £ 0. Let x e / . Then there is somexx G M satisfyingxx >x. Letx2, '-,xr be the remaining elements of M ( in any 
order). Define 1^ = M u | xu x2, —, x^ \. Then each /^ is an order ideal of Pe and the number of maximal elements 
of i/( is at most one more than the number of maximal elements of ik-1- Since/j has < s maximal elements and lr 
hasr maximal elements, some /^ has s maximal elements. This /^ is the desired /', and the proof follows. • 

Using Proposition 1, one can determine the number/^ of elements of rank k of a ^-distributive lattice L with a 
cover function f(k,n), without explicitly determining L Is there a method for computing 

£ e(l) and £ e(i)2? # 

|/|=/r \l\=k m 

There is some evidence for believing that these numbers # 

will have a relatively simple form. In particular, if f{k,n) 
= g(k) (independent of n), then it is trivial that 

X) e(l) = g(0)g(1)-g(k-1). 

4. THE FIBONACCI LATTICE 

Let Kx denote the set of ordered pairs (m,n) of inte-
gers 7 < m, 0<n < 7, under the order relation (m,n) < 
lm',n') if and only if n = 0 and m < m\ Thus Kx looks 
as is shown on the right. 

The lattice J(KX) of finite order ideals of Kx is called 
the Fibonacci lattice and is denoted F%. Thus we have 
the generalized Pascal triangle at the top of the next 
page. 

Proposition 3. The number f^ of elements of F% of 
rank k is the k Fibonacci number (f0 = fx = 1, f/< = 
fk-1 + fk-2'tik>2). 

Proof. We will give three different proofs, reflecting 
three different properties of the Fibonacci numbers. 

First proof. Clearly f0 = fx = 7. Let / be an order ideal of Kx of cardinality k > 1. If the minimal element 0 is re-
moved from Kx, there results an isolated point A- and an isomorphic copy K\ of Kx. If / contains*, then / - j 0,x I 

is an order ideal of K\ of cardinality k- 2. If /doesn't contain x, t h e n / - j # Hsan order ideal of K\ of cardinal-
i t y / : - 7. Conversely if / ' is any order ideal of K\, then / ' u j f j | and / ' u \o,x\ are order ideals of Kx. Hence fy = 
fk-1 +fk-2-

Second proof. Define xt = (i,0) e Kx. Let / be an order ideal of Kx of cardinality k. Let / be the least integer such 
that Xfr-j e /. Then xu x2, —, x^-i are in /, and the remaining / elements of / are of the form (mJf 1), j= 7, 2, ~,i, 
where the m/$ are an arbitrary /-subset of I 2, —, k-i. Hence 
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10 15 15 

h E(V) 
This sum is a well-known expression for the Fibonacci numbers. 

Third proof. There is a one-to-one correspondence between order 
ideals / of Kx of cardinality k and ordered partitions (or composi-
tions) /fj + k2 + — + kr = k of k into parts kj = 1 or 2, as follows: 
kf = 1 if (i,0) e / but (i, 1) £ I, kj = 2 if (i, 1) e /. The number ,of such. 
ordered partitions is well-known to be the kth Fibonacci number / > . • 

We will denote order ideals / of Kl (or elements of F_t) by the no-
tation kt k2 — kr, where kx + — + kr is the ordered partition defined 
above. Thus for instance the order ideal 122112 G ^ is given on the 
right. 

By modifying the second proof of Proposition 3, one can establish 
the following result. 

Proposition 4. The number of elements of F_x of rank k which cover exactly / elements is 

(T-'7')-( k-i 
/ - / 

(with a binomial coefficient equaling 0 if any entry is negative). The number of elements of F_x of rank k which are 
covered by exactly / elements is 0 if k - i is even, while if k - 1 is odd this number is 

(k+i- 1)/2 
(k-i+ 1)/2 . • 
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We now consider the problem of evaluating the sums 

E *w and E *̂ 2 
\l\=k 

Surprisingly, these sums turn out to be the same as for the Young lattice 71 Although coincidences in mathematics 
are suspect, I can offer no other explanation for this phenomenon* The evaluation of these sums for F_x is much 
easier than for T. 

Proposition 5. We have 

E *M = *k 
i/ht 

and E e(l>2 = kl > 
\l\=k 

where the sums are over all order ideals / of Kx of cardinality k, and where tk is the number of elements TX in the 
symmetric group $k satisfying TT2 = 1. 
Proof. Let 

hk and ffk = £ e("2 

I'h* 

8 

Let x be the unique maximal element of Kl which covers 0. We divide all order-preserving bijections a : I -»k_ (/ an 
order ideal of Kx) into two classes: (a) x & I, and (b) x e /. Since K1 -1 Otx I is isomorphic to Kx, the number of a 
of type (a) is hk-f. I f x e / , then o(x) can beany of 2, 3, ~>,kf so the number of o of type (b) is (k- Vhk-2- Hence 
hk = hk-1 + (k- 1)hk-2- Moreover, by inspection hQ = hx = 1, so hk ~ tk. 

Similarly the number of pairs (G,T) of order-preserving bijections of / on-
to kj for all / with x £ I, is Qk-i- If x e / , then there are (k - 1)2 ways of 
specifying a(x) and T(X), so there are (k - 1)2gk-2 Pa'rs m t n s s case- Hence 
#A: = 9k-i + (k- 1)2gk-2- Sinceg0=gx = I we have^ = £/. D 

In analogy with the definition of a Young tableau, we define a Fibonacci 
tableau (l,o) to be a finite order ideal / of Kx, together with an order-
preserving bijection o '. I -> kj where |/| = k. The order ideal / is called the 
shape of the tableau, and k is called the size of (l,o). Thus for example, 
the tableau on the right is a Fibonacci tableau of shape 212211 and size 9 

Proposition 5 can then be restated as follows: The number of Fibonacci 
tableaux of size k is tk, and the number of ordered pairs of Fibonacci tab-
leaux of size k and of the same shape is kl There is a very simple alternative 
proof that the number of Fibonacci tableaux of size khtk- we construct 
a one-to-one correspondence £2 : (lfo)^Ttbetween Fibonacci tableaux (lfo) of size /rand elements TTGS^ satisfying 
IT2 = 1. Namely, we define n by the condition n(i) = jfor/ > / if and only if some maximal elementz of Kl satisfies 
o(zj = i and the unique element y covered by z satisfies o(y) = j. Thus for the Fibonacci tableau illustrated above, 
n - (19)(2)(34)(57)(6)(8). St is easily seen that this construction establishes the desired one-to-one correspondence. 

Similarly one would like to prove the second formula of Proposition 5 by constructing a one-to-one correspond-
ence \p : (l,o,r) -* 77 between ordered pairs Ul,o), (l,r)) of Fibonacci tableaux of size k and of the same shape /,and 
elements n^Sk- The correspondence i// should satisfy the following two properties: (a) If \IJ(I,GT) = TT, then \p(f,T,o) 
= 7r~1, and (b) \p(f,o,o) = £l(l,o). This correspondence would be a "Fibonacci analogue" of Schensted's correspond-
ence for Young tableaux (see Example 3). Such a correspondence was found by E. Bender (private communication), 
as follows: Let;r= (m,n)<El, and define x' = (m, / - nl Then TT IS defined by the conditions 

nfofx)) rfxl 
r(x'), 

if x'£l 
if x'el 

We next consider the problem of evaluating the numbers e(l) themselves, where / is the shape of a Fibonacci tab-
leau. A finite order ideal / of Kx is a rooted tree, so from (5) we have 
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e(l) = k! I I h(x), 

where \l\ = k, and h(x) = card J y\y e /, y > x\. It is easily seen that the above expression fore(i) is equal to the 
product n x -n2 —nr where the /?/s are those integers such that k >nx >n2 > — >nr> 0 and (k -n\-i+ 1,1) G/. 
It follows that no two of the n,'s can be consecutive integers. Conversely, given a set of integers k > nx >n2 > — > 
nr > 0, no two consecutive, there is a unique order ideal / of Kx of cardinality k such that (m, 1)<ai if and only if m 
has the form k- n,- i + 1. We therefore obtain the following result: 

Proposition 6. The set of numbers e(l), including multiplicities, as / ranges over all order ideals of Kl of cardinality 
k is equal to the set of numbers 

II n, 
n<BS 

where S ranges over all subsets of 11, 2, —, k - 1 \ containing no two consecutive integers. • 
For instance, when k=S we have the eight sets S given by 0 , ( 1 ! ' { 2 f ? | 3 f ' { 4 } < f 1 > 3 f ' | l , 4 | , | 2,4|..Hence 

the numberse(l), |/| = 5, are given by 1, 1, 2, 3, 4, 3, 4# 8. 
Combining Propositions 5 and 6, we obtain the formulas 

E n n = fK< E n n2 = kI-
where both sums are over all subsetsS of 1 1 , 2, —, k- 1 I containing no two consecutive integers. Both these for-
mulas can be easily proved directly by induction on k. 

Let us now turn to the problem of counting the number a(m,n) of Kl-partitions of n with largest part <m. A Kx-
partition is nailed a protruded partition [18, §24]. For instance, there are six protruded partitions of 3, as follows: 

. s \ v y/ 
3 2 2 1 1 1 

Proposition 7. Let a(m,n) be the number of protruded partitions of n with largest pair < m. Then 
oo 

E a(men)xn = U (7 - x1'- xi+1 - xl+2 x2i f1 

Proof. A protruded partition of n with largest part < m can be regarded as two sequences au a2, — and bx, h2, — 
of non-negative integers satisfying 

Jjaj+l^bj = n, m > ax > a2 > az > - , aj > bj. 

Let kj be the number of a/s which are equal to L If some ay = i, then bj can be any of 0, 1, 2, —, i, so aj + bj is one of 
i,i+1,i + 2,-,2L Thus 

E a(m,n)x" = S E <*'+ **1+ " + *21) * ) = E (1 - x'- xi+1 - ••-x2i) . U 
n=0 '~1 \kj=0 j i=1 

On the following page, we give a table of a(m,n) for m,n < 10. 
Many features of the theory of ordinary partitions carry over to protruded partitions. We state one such result here. 

For a proof, see [18, §24]. A classical identity in the theory of ordinary partitions is 
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n m 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 

1 
2 
3 
5 
8 
13 
21 
34 
55 
89 

2 

I 
3 
5 
10 
17 
31 
53 
92 
156 
265 

3 

1 
3 
6 
12 
22 
42 
75 
135 
238 
416 

4 

1 
3 
6 
13 
24 
47 
86 
159 
285 
509 

5 

1 
3 
6 
13 
25 
49 
91 
170 
309 
558 

6 

1 
3 
6 
13 
25 
50 
93 
175 
320 
582 

7 

1 
3 
6 
13 
25 
SO 
94 
177 
325 
593 

8 

1 
3 
6 
13 
25 
SO 
94 
178 
327 
598 

9 

1 
3 
6 
13 
25 
50 
94 
178 
328 
600 

10 

1 
3 
6 
13 
2S 
50 
94 
178 
328 
601 

„ " (J-x)(7-xV-(7-xn) 1-0 

The corresponding identity for protruded partitions is 

n (1-qx'r1 

f^0 (1 -x-x*)(1 -x1 -x* -x*) -(1 -x" • 

oo oo 

= E(^^'rfZ ———-
i-o TO {1-xM-x*). 

,n+1 -x2n) 

xM+'V 

. (1 - xh(1 - x - x2)(1 - x - x 3 ) - ( f - x - xj+1) 

By inspection, the Fibonacci lattice F_t does not have a cover characterization. It does possess, however, a different 
type of property, viz., it is an extremal distributive lattice [20]. This means that if L is any locally finite distributive 
lattice with 0 having the same number /> of join-irreducibles of rank k as Ft (namely,/"j = 1,r2 = r3 = — = 2),then 
Jk(L) <ik(Fll In fact, Ft is precisely the distributive lattice £(1, 2, 2, 2, — ) constructed in [20]. 

Recall the result >42 ~J(T2) discussed in Example 4, where A2 is the lattice of parenthesized strings. Consider the 
related problem of parenthesizing a string of kx's subject to the commutative law (but not of course the associative 
law). For instance, when k=6 there are 6 distinct strings, viz.,x(x(x°x3)),x(x2 -x3), x2(x°x3),xz *x2 °x2,x(x(x2 -x2)), 
and x3'X3 (an expression such asx3 has an unambiguous meaning sincex(xx)= (xx)x by commutativityh The 
problem of counting the number N'k of such strings was first considered by Wedderburn [23], who obtained a recur-
sion for N'k. It is unlikely that a simple expression for N'k exists. For an historical survey of this problem, see Becker 
[11. 

Let £ j be the partially ordered set of strings of x's subject to commutativity, ordered in the same way as in A2. St 
has been conjectured (e.g., by myself and by E. Bender) that Ct ^.JlF^l The reason forthis conjecture is the fol-
lowing: It is not hard to see that the sub-ordered set P of £ j consisting of those elements which cover exactly one 
element is isomorphic to F_x. Hence if Ct were a distributive lattice, we would have £, ^J(F_J- Unfortunately, it 
turns out that C_x is not even a lattice. In particular, the elements y = (x-x3)(x3(x'X3)) andz = (x(x-x3))(x3 -x3) lie 
above exactly the same set of elements of P. If C_% were a lattice, the elements of P would be the join-irreducibles, so 
/ and z would lie above the same set of join-irreducibles, which is impossible. 

In conclusion we mention the problem of extending the lattice F_x = J(K1) to a sequence of lattices Ff=J(Kr). 
There are several possible definitions of Kr. The one which seems to work best is the following: Kr is the unique 
locally finite partially ordered set with 0 such that when 0 is removed from Kr,there results a partially ordered set 
isomorphic to a disjoint union of r_ and Kr. For example, see the following page for what K2 and Kd look like. 

Most of the results we have obtained for F_x generalize straightforwardly to Fr = J(Kr). For instance, 

(6) Y.alm.n)xn = VL \ 1 -x 1 f rT'\x ' ' Ya(m,n)xn = S [ 1-x1 l ' * 1 ) . 
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K.2 K 

where 

(n, 
denotes the Gaussian coefficient 

(?) . 
(1-xk)(1-xk-1)-(1-xk-i+1) 

(1-xl)(1-xH)-(1-x) 
Similarly the numbers 

and 

satisfy simple recurrence relations, but they seem difficult to evaluate explicitly. 
The limiting case K^ (where K^ with 0 removed is isomorphic to a disjoint union of K^ and N) seems of some 

interest. The distributive lattice F_x = J(Ka>l is isomorphic to the set of all sequences (nu n2, —) of non-negative 
integers such that all but finitely many n; are equal to 0 and such that /?/ = 0 =»» /+/ = 0, ordered coordinatewise. 
The following formulas can be verified: 

(7) jk = 2k-1, k> 0, £ a(m,n)x" - n ( 1 
n=0 (l-xKl-x')-(l-x') I 

52 e(l) = Bk, £ e(,)* = °k-

Here B^ is a Bell number, (also called an exponential number) defined by 
k 

B, 
0 ' 0 

1< B*+1 =Ys[ki )B'" orbV £ *kx
k/kl - **'1 

15]. Similarly C^ is defined by 

k 2 <*> 
Co = I Ck+1 = H\ki) C>< o r b V E CkXk/kl* = IJ2jlj2x1/2)- 1), 



232 A FIBONACCI LATTICE OCT. 1075 

where 
oo 

/0fej - £ z2k/22kkP 
0 

is the 0t/7-order modified Bessel function. 
Proposition 7 and Eqs. (6) and (7) are actually special cases of the following general result. Suppose/3and Q are 

^-ordered sets such that P has a 0 which when removed results in a partially ordered set isomorphic to a disjoint 
union of P and d Let a(m,n) (resp. b(m,n)) be the number of P-partitions (resp. Q-partitions) of/7with largest part 
</77. Then 

a(m,n)xn = 5 (1 - xiUj(x)f1 , 
i=1 

where 
oo 

Um(x) = J2 b(m,n)xn . 
n=0 

The proof is left to the reader. 
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