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H-258 Proposed by L. Carlitz, Duke University, Durham, North Carolina.
Sum the series

S = Z x%Pz6d,

where the summation is over all non-negative a, b, ¢, d such that

2a < b+c+d

2h < atc+d
2t <a+tbh+d
2d <a+bh+e.

H-259 Proposed by R. Finkelstein, Tempe, Arizona.
Letp be an odd prime and m an odd integer such thatm %0 (mod p). Let Fpp = Fp-Q. Can (Fp, Q) > 12
H-260 Proposed by H. Edgar, San Jose State University, San Jose, California,

Are there infinitely many subscripts, n, for which F,, or L,, are prime?
Editorial Note: Good luck on this enel
SOLUTIONS

CORRECTION
H-179 Proposed by D. Singmaster, Bedford College, University of London, England,

Let kK numberspy, p2, -, px be given. Set a, =0 for n < 0;ap = 1 and define a,; by the recursion
k
an = Z pian.; for n > 0.
=1

1. Find simple necessary and sufficient conditions on the p; for lim a, to exist and be (a) finite and non-zero,
(b) zero, (c) infinite. n-—e
2. Are the conditions: p; > 0fori=1,2,.,py > 0and

k
2=
=1

sufficient for lim..a, to exist, be finite and be non-zero?
[l, — 00
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SOME SQUARE
r-230 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, Pennsylvania.

(a) If 5is a quadratic nonresidue of a prime p (o # 5), then p|Fg 5+ 1), k a positive integer.
{b) If 5 isa quadratic residue of a prime p, then p |Fk (p-1). k a positive integer.

Solution by J. L. Hunsucker, University of Georgia, Athens, Georgia.

In problem H-221 of this Journal (Vol. 2, No. 3), L. Carlitz gave the theorem:

Let p be an odd prime, p #5. If p =1 (mod 4) then (F,_7/2) =0 (mod p) for (5/p) = 1 and (Fp47/2) =0 (mod p)
for (5/p) = —1;if p =3 (mod 4) then (L,-7/2) = 0 (mod p) for (5/p) = 1 and (Lp+7/2) =0 (mod p) for (5/0) = 1.

Using the theorem that Fj,|Fk,, in the case p = 1 (mod 4) and for the case p = 3 (mod 4), using in addition to
Fn|Fikn. the theorem that L, |Fp, if and only if m = 2kn we see that H-230 follows immediately from H-221.

Also solved by P. Tracy and the Proposer.
RECURRENT THEME
H-231 Propaosed by L. Carlitz, Duke University, Durham, North Carolina.
1. LetA,=0 A, =1, and
§ Aok+1 = A2k +A2-1 ,
\ A2k+2 = A2k+1— A2k .

Find A, .
2. LetB,=2 B, =3 and

{ Bok+1 = Bog + Bak-1.,
Bok+2 = Bog+1 — Bk .
Find B,, .

Solution by Robert M. Guili, San Jose State University, San Jose, California.

1 {ali=01,2-)=1011,2132538
() (F (F) (R (Fy)
(F) " (F) (R AR (F)

Agk+1 = Fi+2, Aok+2 = Fr+y Tor k=0,1,2, .

2 {Bli=012-}-{231437411,718.
(L,) (Ly) (L) (Lg) (Lg)-
(Ly) (L) (L) (Ly) (L)
Bok+1 = Fi+2, Bok+2 = Fr+p for k=012, .
To derive these two solutions note that by combining the two equations

f Hakr1 = Hok+ Hoxog
{ Hokv2 = Hokr1— Hok,
we get H ox+2= Hog- 1. Using this relation to replace Ao in the first equation, and A o4+ in the second, we get
[ Hok+1 = Hor-3+ Hop-1
Hak+2 = Hak+a— Hok-2 -
Nowletm=2k—1,andn=2k+2fork=0, 1,2, ---, which yields
§ Hm+1 = Hm-1+Hm
\ Hp+1 = Hp-1 +Hp .



80 ADVANCED PROBLEMS AND SOLUTIONS [FEB.

These we recognize as the generalized Fibonacci recursive relation. By applying the starting values (4, 4,, A,)
and (B,, B,, B,) in problems 1 and 2, respectively, we get the desired result.

Also solved by P. Tracy, A. Shannon, V. E. Hoggatt, Jr., P. Bruckman, and the Proposer.

USING YOUR GENERATOR
H-232 Proposed by R. Garfield, the College of Insurance, New York, New York.
Define a sequence of polynomials Gk fx) g=p asfollows:

7 - x
=2 +ijer —xt® Z Grlele™ .
k=0

1. Find a recursion formula for G (x).
2. Find G (1) interms of the Fibonacci numbers.
3. Show that when x = 7, the sum of any 4 consecutive G numbers is a Lucas number.

Solution by G. Wulczyn, Bucknell University, Lewisburg, Pennsylvania.

SOLUTION 1.

1
1—(x*+ 1)t — xt?

= 1+t (x2 + 1)+ x+t4 x> + 1) +¢° [(‘;') )ﬂ +t6[(x+1)* +x2]
+u_+t2k{(z) (x2+ 1)K + (k2— 1) (x2+ 1)k32 ¢ (k;2 ){X2+ Hk—6x4+_“]
+t2k+1[(’; )(x2+ )% Tx+ ( k; 7) (x? + 1)k4x3 + (kgz ) (x2+ 1)k 7x% + ]

SOLUTION 2.

1 _ 1 -1, t
1-2t* -3 (t+1)(1—-t—t2) t+1 1—-t+¢t?

tn+1[/_-n + (_”n+7] .

= T+ 12—t 4t Fpt™]

)

SOLUTION 3.
ot (=107 4 Fopg # (=1)""2 4 Frug# (= 1)"* 3 + Fryg + (~ 1)

= \—/—; [a"(1+a+a+a)—b"(1+b+b+b)] = \/_;? [a" (_MZ? 5) +5" (4__£-22 5 )] N

= 3n+3+bn+3 = Lp+s .

Also solved by C. Chouteau, P. Bruckman, A. Shannon, and the Proposer.

GENERAL-IZE

H-233 Proposed by A. G. Shannon, NSW Institute of Technalogy, Broadway, and The University of New England,
Armidale, Australia.

The notation of Carlitz* suggests the following generalization of Fibonacci numbers. Define
f,(f} = (ank+k __bnk+k)/(ak _ bk),

where k =r— 1, and a,b are the zeros of x> — x — 7, the auxiliary polynomial of the ordinary Fibonacci numbers, f,§2}.
Show that
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(a) S A" = /11— (% + ¥ hx + (aFb* Jx2) .
n=0
Let £ = (a**7 = b¥*7)/(a — b), and prove that
— N=Mm-=S
(b) - 3 (’s")("s’")f251 et
osm+s<n

(Note that when r =2 (and so k = 7), i = f—7 = 1, fx-2 = 0, and (b) reduces to the well known

(2) _ n—m
fn™ = Z ( m ) )
0<2m<n
Solution by P. Bruckman, University of Illinois at Chicago, Chicago, Illinois.

We form the series

N (r) n - ank+k—b"k+k n ak - k. n k,n
z f,.,x=§ L )x= E (a“x)" - z,(bX/
k k k k
n=0 n=0( ak — bk a~—bh" p=o a ——bk n=0
k .
__a 7 b 1 K kb1
= . - e — L — = I (1=a"xNT-b"x)$
K —bk 1—akx gk _pk 1 pky ‘

{1=xi+ )T = L= (a5 #0500 (ab)x2} T

which is the result of part (a). Now consider the series S(x) defined as follows:

Six) = f: x" Z ( ) (n -m ) fks -5 fllg—m-s
n=0

o0<m+s<n
then

0 n n-m

S(x) = Z Zz x”( ';” )( - ) fZSIfIr(n-sfn—m—s

n=0 m=0 s=0

I}
1M
1ok

M- 1M-

X" ( sTm ) ( g_—’r: ) fks—mekm-sfn—s

o e
O(n, m,s) = Z Z zefn,m,ﬁ

m=0 n=m s=m

M:
NE

3
i
Q
3
i
)
%)
3

c© oo =

Z Z Z 6 (n,m,s)

m=0s=m n=s

ntm+s [m n+s m-s
IRl (B [ 7

m,s,n=0

oo

XM ( ) f2s1fm—s (n+s) (xfi )7 =

m,s= n=0

]
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oo

Z s (lsn ) f2._91flf(7:—s”_xfk}—s—1

m,s=0

2y
(1-xfe)! Z‘, XMl E ( ) { fk_277 xfe] }

m=0

oo ! 2 .m
o m Xfe-1
(1- xfy) mgo (xfk-2) \ I+ fy-2(1 = xfy) }

2
= _ -1 _ _XTTk-1
(1—xfi) { 1 — xfk-2 T xf, }

= % (7—ka)(7.—xfk'_2)—)(2f/3_,} -

-1
=§ 1—x(fy + fk_2)+X2(fkfk-2‘ fl?—I)}

| 2 217 . th o .
=T = x(Fraq+ Froq) +x (Fk+1Fk_1—Fk)f (Fy isthe k™7 Fibonacci number)

oo

h

I—ka+(— 1)kx? f = Z f,fr)x", by part (a).
n=0

Comparing coefficients of the power series, this establishes part (b). N.B. F,.7)x / Fxc = f,g’).
Also solved by the Proposer.

Editorial Note: Dale Miller's name appeared incorrectly in H-237.

Continued from page 82e¢ ik
Returning to (2) above, we can generate multigrades of higher orders. (For the standard method employed, see below.! )
| give now, as an example, a third-order multigrade:

n-1
ALFT + A2Fg - An-1Fni1 +( ZA-2 )F +A1(2Fp=F )™+ A2(2F5-F2)™ - Ap-1(2Fp - Fpg)™
-1 n-1
* (nz A-2 ) F' = Ay(Fp-F1)™ +Aa(Fp-F2)™ ---A,,_,(F,,-F,,_,)'"+( *1; A-Z) om
1

n-1
+A1(Fn+F1)m+A2(Fn+F2)m’ wApq1(Fp+ Fp1)+ (? A-2 ) (2F, )"

(wherem = 1,2,3).

{I have added £, to each term in (2), and added the L.H.S. totals to the original R.H.S. and vice versa.] Expressed
more tidily, the above becomes

Arl(F )™ 4 (2Fy — F1)™] + A2 [(F2)™ + (2Fp — F2)™] - Apeq [(Fpa1)™ = (2Fp — Fp_g)™] +2 [’%IA-ZJ Fa
= AgllFp = F1)™ +(Fy + F1)™] + Aal(Fp = F2)™ + (Fy + F2)™] -+ Aneq1 [(Fn — Freq )™ + (Fp + Faog)™]
+('721-)1A—2 )[(2F,,)’"+0’"] (wherem=1,2,3).

Again, if we add any quantity B to each term, the final 0" terms each become 8",
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