If *m* is even and *n* odd, then

$$\left|\frac{m}{2}, 0\right| \land \left|0, \frac{n-1}{2}\right|$$
 and $K\left(\frac{m}{2}, 0\right) \lor K\left(0, \frac{n-1}{2}\right)$.

Thus we have shown that m > n if and only if f(m) = f(n).

The operations \oplus , of addition and \otimes , of multiplication are defined on *B* as follows:

(8)
$$K(a,b) \oplus K(c,d) = \begin{cases} K(a+c, b+d) & \text{if } m,n \text{ are even} \\ K(b+d+1, a+c) & \text{if } m,n \text{ are odd} \\ K(b+c, a+d) & \text{if } m \text{ is even}, n \text{ odd} \\ K(a+d, b+c) & \text{if } m \text{ is odd}, n \text{ even} \end{cases}$$

$$K(a,b) \otimes K(c,d) = \begin{cases} K(2(a-b)(c-d),0) & \text{if } m,n & \text{are even} \\ K(c,d+2(a-b)(c-d)+b-a) & \text{if } m,n & \text{odd} \\ K(a+2(a-b)(d-c),b) & \text{if } m & \text{is even},n & \text{odd} \\ K(c+2(a-b)(d-c),d) & \text{if } m & \text{is odd},n & \text{even} \end{cases}$$

where m,n are the positive integers corresponding to (a,b) and (c,d), respectively in (4). It is easy to show that

$$f(m + n) = f(m) \oplus f(n)$$
 and $f(mn) = f(m) \otimes f(n)$.

A treatment similar to that above for arithmetic and geometric progressions can be found in [1].

REFERENCE

1. M. D. Darkow, "Interpretations of the Peano Postulates," Amer. Math. Monthly, Vol. 64, 1957, pp. 270-271.

A FIBONACCI CURIOSITY

LEON BANKOFF Los Angeles, California 90048

In the Fibonacci sequence $F_0 = 0$, $F_1 = 1$, ..., $F_n = F_{n-1} + F_{n-2}$,

th	e su	m o	f the	e digit	s of	F	~	0
"	"	"	"	ň	"	F,	=	1
"	"	"	"	"	"	F,	=	5
"	"	"	"	"	"	F_10	~	10
"	"	"	"	"	"	F_{31}	~	31
"	"	"	"	"	"	F 35	~	35
"	"	"	"	"	"	F_{62}	ĩ	62
"	"	"	"	"	"	F 72	=	72
