If m is even and n odd, then

$$
\left|\frac{m}{2}, 0\right| \Delta\left|0, \frac{n-1}{2}\right| \quad \text { and } \quad K\left(\frac{m}{2}, 0\right) \nabla K\left(0, \frac{n-1}{2}\right) .
$$

Thus we have shown that $m>n$ if and only if $f(m) \nabla f(n)$.
The operations \oplus, of addition and \otimes, of multiplication are defined on B as follows:
(8)

$$
\begin{gathered}
K(a, b) \oplus K(c, d)=\left\{\begin{array}{l}
K(a+c, b+d) \text { if } m, n \text { are even } \\
K(b+d+1, a+c) \text { if } m, n \text { are odd } \\
K(b+c, a+d) \text { if } m \text { is even, } n \text { odd } \\
K(a+d, b+c) \text { if } m \text { is odd, } n \text { even }
\end{array}\right. \\
K(a, b) \otimes K(c, d)=\left\{\begin{array}{l}
K(2(a-b)(c-d), 0) \text { if } m, n \text { are even } \\
K(c, d+2(a-b)(c-d)+b-a) \text { if } m, n \text { odd } \\
K(a+2(a-b)(d-c), b) \text { if } m \text { is even, } n \text { odd } \\
K(c+2(a-b)(d-c), d) \text { if } m \text { is odd, } n \text { even }
\end{array}\right.
\end{gathered}
$$

where m, n are the positive integers corresponding to (a, b) and (c, d), respectively in (4).
It is easy to show that

$$
f(m+n)=f(m) \oplus f(n) \quad \text { and } \quad f(m n)=f(m) \otimes f(n)
$$

A treatment similar to that above for arithmetic and geometric progressions can be found in [1].

REFERENCE

1. M. D. Darkow, "Interpretations of the Peano Postulates," Amer. Math. Monthly, Vol. 64, 1957, pp. 270-271.

A FIBONACCI CURIOSITY

LEON BANKOFF
 Los Angeles, California 90048

In the Fibonacci sequence $F_{0}=0, F_{1}=1, \cdots, F_{n}=F_{n-1}+F_{n-2}$,

> the sum of the digits of $F_{0}=0$
> " " " " " " $F_{1}=1$
> " " " " " " $F_{5}=5$
> " " " " " " $F_{10}=10$
> " " " " " " $F_{31}=31$
> " " " " " " $F_{35}=35$
> " " " " " " $F_{62}=62$
> " " " " " " $F_{72}^{62}=72$
*

