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OF THE SEQUENCE OF FIBONACCI NUMBERS

T. E.STANLEY
The City University, St. John Street, London E.C.1, England

In the work of Wall [2], a function ¢ was defined by “‘¢(m) is the length of the period of the sequence of Fibon-
acci numbers reduced to least non-negative residues modulo m, for m > 2." Thus, the domain of @ is the set of posi-
tive intggers greater than 2, and the range was shown to be a subset of the set of all even integers. Below, | determine

the range of ¢ exactly. In [1] I proved the following
Theorem A. If mis an integer greater than 3 then ¢(F,,,) = 2m if m is even and ¢(Fp,) = 4m if m is odd.
Here, Fpy, is the m™ Fibonacci number, where
F, =0 F, =1, Fnig = Fn#Fpq (0 > 1).
Theorem 2 of [2] shows that the values of ¢ are completely known provided its values at all prime powers are
known. But, as the table of values included in [2] shows, the values that ¢ takes at primes do not seem to follow

any simple pattern. In an attempt to find more of the values of ¢ | will prove the following
Theorem B. fm > 2 then ¢(Fp-1 + Fm+1) = 4m if m is even and @(Fpy—1 + Fm+1) = 2m if m is odd.

Theorems A and B have the following
Corollary. The range of ¢ is the set of all even integers greater than 4.

It is clear that we cannot have an integer n for which ¢(n) = 2 or ¢(n) = 4. Suppose that r is an even
integer other than 2 or 4. If r is a multiple of 4, say r = 4s, then @(Fs_7 + Fg+1) = rif s is even, while ¢(Fs) =r ifs s

Proof.
odd and s > 3. Also ¢(F,) = 12. If r is not a multiple of 4, say r = 25, where s is odd and s > 1, then
HFs-1+Fseq) = r.
A subsidiary result is required to prove Thearem B. In the following, the symbal = denotes congruence modulo

(Fm-1+Fm+1)- .
Lemma. For 1<r<mletG,=Fpy_1+Fms7— Fr. Then
_ f Fm-r if 0<r<m and r iseven

i Fmtr = \ G-y if 1<r<m—1 and r isodd.
If m is a positive even integer then

(il) F2m+rEGr lf 0<r<m.
_ § Gmpp if 0<r<m and r iseven
(i) Fam#r = { Frp if 1<r<m—1 and risodd.
Prooﬁ We prove these results by induction on r.
(i) The assertion here is trivially true if 7 = 0 or r = 1. Suppose the result is true forr — Tand . Ifr+ 7 is

by hypothesis

Fmtr * Fm+r-1 = Fm-p * Gm-r+1

odd then

Fmtrt1 =
Fm-1* Fm+1 * Foer — Fm-r+1

]

= Fm-1+Fm+1 = Fm-(rt1) = Gm-(r+1) .
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If r + 7 is even then
Fmert1 = Fotr + Frepeet
= Gm.r + Fm-(r-7) by hypothesis

il

Fm-1+ Fmt1 + Fm-(r+1)
Fm-(r+1)
{ii) The case in which r = 0 follows directly fram (i} with 7 = m. The result is also true for r = 1 because

i

Fom+1 = Fam *+ Fameq
Fo+ Gma(m-1) by (i)
Gy

o

Suppose the result is true for r — 1 and . Then
Fomtrs1 = Famer* Fam+r-1
= G, + G,.7 by hypothesis
= Fme1* Fmer — Freq
= Greg
{iii) The case in which r = 0 follows directly from (i) with r=m. When r = 1 we have
Fam+1 = Fam* Fam-1
= G+ Gp-1 by (i)
= Fm-1+2Fmt1 = Fm
=Fm-1 ,
0 that the result is true for = 1. Suppose it is true forr — 1and z, If r+ 1 is odd then
Famtre1 = Famtrt Famer-1
Gm-r * Fm-p+1 by hypothesis

= Fm-(r+1) .
while if r + 1 is even we have
Fam+r+1 = Famer* Fam+r~1

= Fmert Gm-r+1

= Gm-fr+1)
This finishes the proof of the Lemma.

We may now prove Thearem B by noticing that if m is even then the sequence of Fibonacci numbers reduced mod-

ulo (Fpy-1 + Fm+1) consists of repetitions of the numbers

Fo, F1. s Fm, Fm#1, Fm-2, Gm-3Fm=4.Gm-5, -+, F2, G1,0,
GI! 621 s Gm-h GMI Fm-—I: Gm—21 Fm-—3: Gm—4t s 621 F1:

while if m is odd we obtain
FO: F], . FMI Fm+1, Fm-2: Gm—3, Fm—4l Gm-5, s 621 F7 .

Thus, counting, and noticing that G, # F,, we obtain the required results.
Using Theorem A, it may be shown that if m > 4 then

O Fm-1+ Fm1) = Bd(Fm-1) + 9(Fme1)).
I conclude by conjecturing that if k is a positive integer with m — k > 3 then
Fmete + Frtte) = % (@(Fmete) # 0 Fnsic)).
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PARITY TRIANGLES OF PASCAL'S TRIANGLE

S.H. L. KUNG
Jacksonville University, Jacksonville, Florida 32211

In the Pascal’s triangle of binomial coefficients, (;'), let every odd number be represented by an asterisk, “’*,"
and every even number by a cross, “1.”” Then we discover another diagram which is quite interesting.

Every nine (odd) numbers form a triangle having exactly one (odd) even number in its interior (odd!). Thus we
shall designate it as an Odd-triangle.

The even numbers also form triangles whose sizes vary but each of these triangles contains an even number of
crosses. This set of triangles is called Even-triangles.

The present diagram (n = 37) can be easily extended along the outermost apex of Pascal’s triangle. Some partial-
observations are:

(@) 1fn=2"—7and0<r<2 — 1, then ('r’) is odd,

b) 1fn=2"and 7<r<2 -1, then ('; ) is even,
where / is a nonnegative integer. '
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