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1. INTRODUCTION 
We seek integer solutions to the Diophantine equation 

(1) xn+ym = zk, 

where n, m and k are positive integers. We have a general algorithm which sometimes augments primitive parameters 
to primitive solutions regardless of the choice of m, n, k. We classify the types of applications of this algorithm based 
on the greatest common divisor of the exponents. For some types all the primitive parameters augment to all the 
primitive solutions. For the type which includes the famous case n = m = k > 2, the finding of the primitive param-
eters which augment to primitive solutions is equivalent to the original problem. Without gain of generality (an ex-
pression of Professor DeHardt), we could extend this approach to a Diophantine equation with more powers on the 
left than two but only one power on the right. 

2. HISTORY OF THE PROBLEM 
In 1964 we obtained the computer solution (1176)2 + (49)3 = (35)4 and from this one example we discovered our 

method of augmentation as well as a type of exponents for which we determined all primitive solutions. Subsequent-
ly that year Professor E. G. Strauss pointed out to us that this method could be applied successfully (i.e., yielding 
solutions) to another type. At this time we found that Basu [1] and others had found rational solutions for the first 
type mentioned above. Recently Beerenson [2] has found a similar method for finding integer solutions for this first 
type. At this later time we found that Teilhet [8] in 1903 used the method of augmentation for a special case k = 3, 
m=n=2. 

1 TRIVIAL SOLUTIONS 
For completeness as well as for illustrating a simple case of primitive solutions, we now discuss the trivial solutions 

to C\),x0, y0, z0, where xQy0z0 = 0. Let us call the case x = y = z = Q, the zero case, and turn our attention else-
where. Then exactly one of x0, y0, z0 is zero, and the non-zero elements are both powers with common exponent 
the least common multiple of their corresponding exponents (x0 corresponds to n, y0 to/??, z0 to k). Thus for the 
non-zero trivial solutions with x0 = 0, we say y0, zQ form a primitive solution if and only if there is no integer d > 1 
such that d \y0 and d \zQ where L = [m,k]. Thus the possible candidates for a non-zero, trivial, primitive solution 
are:K0

 =±hz* s±1. 

4. PRIMITIVE SOLUTIONS AND THE CLASSIFICATION SCHEME 
The computer example indicated to us that the usual definition of primitive solution x0, y0, z0, namely, one 

where 
(**, yj = (*<>, zo> = fro, zj = I 

was not adequate. Thus we give a new definition which reduces to the old when appropriate. 
Definition: A solution u, vf w, uvw^O, to (1) is called a (non-trivial) primitive solution if and only if there 

is no t > 1 such that ta\u, tb\v, tc\w, where 
a = L/n, b = L/m, c = L/k, and L = [n, m, k]. 

206 



OCT. 1976 THE SUIV! OF TWO POWERS IS A THIRD, SOMETIMES 207 

The case n = m = k > Z \$ referred to as Fermat's Last Theorem (F.LT.) wherein the conjecture states that there 
are no non-trivial solutions. This conjecture is true for/7 < 25000 [7] . \\(n,m,k)> 2, then (1) for this type of ex-
ponents can be reduced to F.LT. 

The type (n,m,k) = 2 has not yet been completely resolved. If n = 2h, m = 2i, and k = 2j, and if (h,i) = (h,j) = (ij) = 
1, then (E.G. Strauss) all possible solutions can be obtained by augmentation. If (h,i) > 2, we can show there are no 
non-trivial solutions if F.LT. holds. We conjecture the same holds for (hj) > 2 and (ij) > 2. 

The type (n,m,k) = 1,butnooneof/7,/77,/r is relatively prime to the other two, is the only known type which some-
times yields a finite number of primitive solutions. Sn all other cases, as far as we know, if non-trivial solutions exist, 
there are an infinite number of primitive solutions. 

We complete our classification scheme by mentioning the remaining type where one of n, m or k is relatively prime 
to the others. This is the "first type" referred to in Section 2. 

5. THE METHOD OF AUGMENTATION 

Let D = [m,n] throughout this section. 

Definition: Positive integers x0 and y0 are primitive parameters for (1) if and only if there is no f > 1 such 
that td\x0 and te\yQ , where d = D/n and e = D/m. 

Definition: A primitive solution u,v,w, uvw ? 0, to (1) is an augmentation of primitive parameters x0, y0 

for (1) if and only if u=x0z
d, v = y 0z%, zdn = ZQ171 = z®. I fz0 > 1, then we have a proper augmentation. 

Theorem 1. If positive integers u,v,w form a primitive solution to (1) then there is a unique ordered pairx0,K0 

which are primitive parameters so that u,v,w\% an augmentation of x0, y0. 

Proof. Let t be the largest positive integer for which td\u an d *e\v and d=D/n, e = D/m. T\\mxQ=u/td 

andy0 =v/f are primitive parameters, and u,\t,w is an augmentation ofx0 ,y0. Suppose^, y t are primitive param-
eters and 

u = xxz
d, v = yxzl. 

Let/7 be a prime such thatpq\\ t andpQ\\z0 and qf(L Thenpd\xj and/?e\y,-, where/ = 0 if q <Q and/= 1 if Q < 
q. This contradicts the condition x,y,- are primitive parameters. Thusf : =z0 andx0 =xt andj/0 =yx. 

Theorem 2. If A-0, yQ are primitive parameters for (1) andx" +y™ is written as akakZ
1i — a^ai, where each 

a;, i f k, is squarefree and (a-,, aj)= 1 for each i <k? j <k, i ? j, then there is an augmentation to a positive primitive 
solution for (1) if and only if for each /; 1 <i <k, either a; = 1 or there is a solution g\ to Dg\ = -/ ' (mod k) and g-t is 
the smallest such positive solution. 

Proof Suppose we have a primitive solution u > 0, v > 0, w > 0. Then 

Hence 

u = x0z
d

0, v = y04 and wk = ak
ka

k
k_\ -a^a^Zg 

(w/ak)
k = akZ] -a^ajZQ . 

Suppose there is an /̂  1 < / < / r , such that a,-^ 1. Then for each prime p dividing a; we have p'p9 = pq , where 

p9\\z0 and pq\\(w/ak). 

Thus Dg =-i (mod k). The smallest such positive solution \%<k/(D,k) [2, p. 51]. \ig>k/(D,k), then gD > [D,k] 

= L = [n,m,k]. Thus 
pL\u". pL\vm, pL\wk, 

and u,\/,w is not a primitive solution. 
Suppose the conditions hold, and we write bc as/? exp c, thenz^ is one if all a/= 1 fo r /V& and is the product of 

a,- exp D g; for all i, 1 < / <k and ai$\, otherwise. Then 

u = xOzO' v = VozO* a n d w s ak*' 

where 7T is the product of the positive kth roots of a,-exp f\, fj= Dgj + i,a-st 1, or one. This is a solution to (1) but it 
may not be primitive whenz0 $ 1. 
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If this is not a primitive solution, then there is a prime/? such that 

pa\x0z
d

0, pb\yozeo and pc\w, 

where a = L/n,b = L/m,c = L/k If pj(a,-for any i, 1 </<k, then/7 /{z0 and/7a|x0 and/?^|y0. Since L - VS for 
some integer S, a = Sd, b = Se, andx0 and y0 are not primitive parameters. 

\\p\aj, then/7 exp#/|z0, andg,-< k/(D,k). But 

k/(D,k) = [D,k]/D » L/D = S. 

Theng,<S - 1,so 
g,-d < dS-d = a-d, g,-e < eS - e = h - e. 

Since 
Pa\*OzO' a n d pexpg,-dlZQ, 

then p \xo;similarly pe\yo an&xo, yo are not primitive parameters. 

6. THE TYPE (n,m,k) = 2 

Here n = 2h, m = 2i, k = 2j. For completeness we give a proof for a theorem in the literature [4] because it is easy 
and not too accessible. 

V. A. Lebesque Theorem: lfx2t + y2t = z2 has a non-trivial solution then t is odd and ut + vt=wthasa 
non-trivial solution. 

Proof. If t is even, we use the fact [3, p. 191] that*4 +y* = z2 has only trivial solutions. Thenxt= 2rs, y* = 
r2 - s2 [3, p. 190]. But (r + s, r-s)= I (In this case the new and old definition of primitive are equivalent), hence 
r + s = u* and r-s = vf, but either2r= wt or2s = wt. In the former case, by adding r + s to r—s, we obtain i / f + 
vt=wt. In the latter case subtract/- -s from r + s and rename. 

Lemma 1. \\n = 2,m = 2f k = 2t, then all the primitive solutions to (1) are obtained by augmentation of prim-
itive Pythagorean triples. 

Proof. From a primitive Pythagorean triple [3, p. 190] x0, y0, z0, we can use x0, y0 for primitive param-
eters, and if 

2 2 2t 2t-1 
X0+V0 = a2ta2t-1 "'a2a1 

under the conditions of Theorem 2, then a, = 1 for all odd / and 2g,=-i (mod 2t) can be solved for all needed even 
i. If xl + y\ is not a square, then when written in the above form a,-1 1 form some odd i, and 2gj = - / (mod 2t) has 
no solution, and there is no augmentation. 

NOTE: Our method does not distinguish solutions 15, 20, 5, and 7, 24, 5 forn - m = 2, k = 4, except as proper or 
improper augmentations. For n = k = 2, m = 4 we use a general modification of Theorems 1 and 2 using 

zO-~xO - amam-1 a2a1-
Lemma 2. Sf n = 2, m = 2$,k = 2t, (s,t) = 1, then all primitive solutions to (1) are obtained from primitive so-

lutions to (1) with n = 2, k = 2by augmentation. 

Proof \fx0, y0, z0 is a primitive solution to (1) with n = 2,m - 2s, k = 2, then;^, y0 are primitive parameters 
for n = 2, m = 2s, k = 2t, (s,t) = 1, and the corresponding odd indexed a; = 1, and 2sg,- = - / (mod 2t) can be solved 
for all even /. But if y0 +y0

s is not a square for;f0/ y0, primitive parameters then there is an odd /such that a/^ 1, 
and there is no solution to 2sg,- = - / (mod 2t). 

Theorem 3. If 
n = 2h, m = 2i, k = 2j, (h,i) = (h,j) = (i,j) = 1 

then there are an infinite number of primitive solutions to (1) obtained by none, one, or more augmentations of 
Pythagorean triples. 

We do not give the proof since it repeats a third time essentially the proofs of the two lemmas. 
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7. THE TYPE (m,n,k) = 1 BUT NONE OF n,m,k IS RELATIVELY PRIME TO THE OTHER TWO 

We know how to solve only n = 2h, m=3i, k = 6] for this type. We assume a result of Legendre [5 ] , namely that 
x3 + y3 = 2z3 implies x = ±y. Using this hard to obtain result we give a proof of a theorem in the literature [6,9]. 

Thue-Lind Theorem. The only non-trivial primitive solutions t o * 2 + y3 = z6 Mex = ±3,y = -2,z = t l 

Proof. First we note (z3 -x,z3 +x)= 1 o r Z In the former case,z3 -x = u3,z3 +x= v3, and u3 + v3 = 2z3. 
By Legendre's result, u = ±v. If u = v, x = 0, and if u = -v, then z = 0. Therefore for non-trivial solutions (z2 -x, z3 

+ x) = 2. Now 

z3 -x = 2y3 and x3 +x = 4v3 or z3 -x = 4u3 and z3 +x = 2\/3 . 

One case can be obtained by the other by replacing x by -x, but x is a solution if and only if -x is. Thus we con-
sider the former case only. Then by adding, we obtain z\ + (-u)3 = 2\/3, and by Legendre's result, z = u orz = -u. 
Sf z = u, then v = 0, and / = 0; thus for non-trivial solutionsz = -u. Then v = -u, s®, from (u,v) = 1,u = +1, \/-±f; 
hencey =-2,z = ±L Q.E.D. 

Mow any solution u, v, w to (1) for n = 2h, m - 3if k = 6j is a solution to the case n = 2,m = 3, k = 5 and hence 

uh = ±3a3, vl = -2a2, w1 = ±a. 

If/7 is a prime greater than 3 an6pd\\a, then 

h\3d, i\2d, and j\d and [n,m,k]\6d 

and this is not a primitive solution. Thus a = 2b3c, and j\ h and j\c and h \3b and i\2c and h \ 1 + 3c and /1 / + 2b. Con-
versely if these conditions are met then there is a solution. Moreover, it can be shown there is ai? and c if and only if 
(h,i) = (bj) = (ij) = 1- Note for b = 4 c = 9, we obtain 8, 9, 6 case as well as 8, 27,6 case. 

8, THE REMAINING CASE AND SUMMARY 

The remaining case when one of n, m, k is relatively prime to the other two, then the conditions of Theorem 2 are 
always met and every set of primitive parameters augment, when the equation is written with the special exponent 
term being the only term of one side of the equation. For example, n = 2,m =3, k = 4 then we write z4 -x2 = y3, 
and, for example, 5, 24 being relatively prime are primitive parameters and 54 - 242 = 72 from the Pythagorean 
triple, 7, 24, 25. Then we augment by 74 and obtain the solution we found on the computer. 

Mr. Jim Grant, U.C.L.A. student, has also found an algorithm for obtaining rational solutions for this remaining 
case. He has made a real gain with his general approach because it not only applies to general Diophantine equations 
of this type but also applies to many other problems as well, including some differential equations. 

REFERENCES 

1. N. M. Basu, "On a Diophantine Equation," Ball, Calcutta Math. Soc. (1940), pp. 15-20. 
2. R. G. Beerensson, "On the Equation xn ± yn =zm," The Mathematical Gazette, 54 (1970), pp. 138-139. 
3. G. H. Hardy and E, M. Wright, An Introduction to the Theory of Numbers, Oxford, Fourth Edition, 1960. 
4. V. A. Lebesque (entry 31), L E. Dickson, History of the Theory of Numbers, Vol. I I , Chelsea, N.Y., 1952, p. 737. 
5. A. M. Legendre (entry 184), L E. Dickson,/M/., p. 573. 
6. Lind (entry 224), L E. Dickson, ibid,., p. 766. 
7. J. L. Selfridge and B. W. Pollack, "Fermat's Theorem is True for any Exponent up to 25000," Notices of AMS, 

11 (1964), p. 97. 
8. P. F. Teilhet, "Cube somme de dans Carres," Llntermediaire desMathematicens, Vol. 10, 1903, p. 210. 
9. Axel Thue (entry 236), L E. Dickson, ibid., p. 580. 


