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In this paper we study a class of functions which we call Pascal functions, generated by the diagonals of tri-
angular arrays, and discuss some of their properties. The Fibonacci polynomials become particular cases of 
Pascal functions, and so our results are of a fairly general nature. 

1. DEFINITIONS AMD GENERAL PROPERTIES 

Consider a polynomial function in two variables, p(x,y). It is defined to be a Pascal function of (k - 1)st order 
if 

[n/kJ 
(1) p(x,y) = £ amxn~kmym, 

m=0 

where the am are non-zero constants, and [x] represents, for real x, the largest integer not exceedingx. Let us 
denote the set of all Pascal functions (polynomials) of kth order by I I ̂ . (Note: k is a positive integer.) 

One generalization of the famous Fibonacci polynomials is 

F0(x,y) = 0, F^(x,y) = 1, Fn+2(x,y) = xFn+1(x,y) + yFn(x,y), n = 0, 1,2, 
We find that 

Fn(x,y) e n 7 / n = 0, 1,2,3, - . 

See Hoggatt and Long [1 ] . It is interesting to note that the following properties hold: 

Lemma 1. \ip(x,y) mdp*(x,y) are in U^, then q(x,y) is in 11^, where 
q(x,y) = p(x,y)p*(x,y). 

This is the same as saying that H^ is closed under multiplication. 
If p(x,y)^ Uk-i, and has an expansion as given in (1), then tetD(p) = n. We then have 

Lemma 2. \\p(x,y) m&p*(x,y) are in H^, then 
q(x,y) = p(x,y)+p*(x,y) 

is in II ̂  if and only if D(p) = D(p*l 

Lemma 3. \ip(x,y) is in Ily ,̂ then 

dp(x,y) a n d dp(x,y) 
dx dy 

are in 11^. 
The three lemmas given above can be proved easily. 
We define a sequence of functions 

to be proper if 
(2) D(pn+1) = D(pn)+1 with D(p0) = D(P1) = 0. 

By a Pascal array we mean a triangular array of numbers represented in Fig. 1 below: 
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co,o 
C1,0 C1.1 

C2,0 C2,1 C2,2 
C3,0 C3,1 C3,2 c3,3 

Figure 1 

If now we replace every c/j by c,jx'yJ, and take the rising diagonal sums, where the rising diagonals have aslope 
k, we get a proper sequence in 1 1 ^ . Conversely, to every proper sequence in I I ^ , we can associate a triangular 
array as in Fig. 1. Note that we can get infinitely many proper sequences from Fig. 1 as k varies, and all of these 
sequences for different values of k, we call "associated sequences." The triangular array which generates these 
sequences, is called their "associated array." 

We now discuss some special properties afp(x,y) e 11^. 

2. SOME SPECIAL PROPERTIES OF PASCAL FUNCTIONS 

Theorem 1. Consider the proper sequence of Pascal functions \pn(x,y)\li=o e Rk satisfying 

(3) Pn+l(*,y) = axpn(x,y) + aypn-k(x,y), n > k, 
with 

P0(x,y) = 0, Pi(x,y) = a, p2(x,y) = a2x, - , Pk(x,y) = akxk~1. 
Then 

,M\ zpn(x,y) dpn+k(xfy) * - * , , / , 
(4) dx = ~—f = 2- f Pk(x,Y)Pn-k(x,y)-

v k=o 

Proof. One can establish the first part of (4) by induction. It is clear from (3) that 

(5) aW^W = gx a ^ M +aPn(x,y,+ay IBiddHl 
dx dx dx 

and 
IR\ ZPn+k+l(x,y) _ Wn+k(x,y) . / . , f l l / *Pn(x,Y) 
(6) = ax + apn[x,y) +ay . 

dy dy dy 
The form of (5) and (6) together with the fact that the first part of (4) holds for/7 = 1, 2, 3, •••, k, proves it by 
induction. We now want to show 

(7) ^ ^ - £ pk(x,y)pn.k(x,y). 
k=0 

Consider the generating function 

GM = E Pn(x,y)tn = : - ^ 

We have 
n=0 1-axt-aytk+1 

^ dPn(X,y) n = gGft) = g2£_ = fr/ , / 2 

h ~dX ' dX ~ d-axt-aytk+1f~l ' 
This proves (7) and so we have established Theorem 1. 

Corollary. For the Fibonacci polynomials defined before, 

*>Fn(x,y) dFn+1(x,y) \ ^» r / j r / J 
-Tx— = —Tv = h Fk(x,y)Fn„k(x,y). 

dx dy 
k=0 
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Proof. The corollary follows by taking k = 1 in Theorem 1. 

Theorem 2. If 
?>Pn (x,y) f . 
— - — = Pn,i(x,y), 

dx 
then define 

n 
(8) Pnjx,y) = J2 Pk,r-l(x,y)Pn-k(*,y)-

k=0 

Now 
7 drpn(x,y) 

Pnjx,y) 
r! r 

dx 

Proof. Differentiate the generating function G(t) in the proof of Theorem 1, r times. Theorem 2 follows. 

Theorem 3. If a proper sequence of Pascal functions 

{Pn(x,y)\n=0 G Rk 

satisfy (4), then they satisfy (3). (Converse of Theorem 1.) 
Proof. Consider the first (k + 1) members of the sequence 

a0,a1/a2X,a3x
2, -,akx

k 1. 
Because of (4) we have 

•£ (a0) = 2a0al , 
and ax f 0, which gives a0 = 0. 

Further, 

^ (a2x) = a2 = a\. 

Similarly, one may show 
ar = a^ = ar, r = 7, 2, - , k. 

Now assume that (3) holds for n = 0, /, 2, 3,-,/7?. Let now 
m 

p*m+1(xfy) = Y^ Pk(*,y)Pm-k+i(x,y)-
k=1 

Clearly, by Lemmas 1 and 2, we have/7^7 (x,y) e I I ̂  . 
Now, denote 

P%+j(x,y) = axpm{x,y) + aypm-k(x,y). 
We have because of Theorem 1 

dp™+1fx,y) 
dx 

But we know, because p 0 (x,y) = 0, 

Pm+ifay)-

*Pm+i(x,y) _ » f j 
Vx Pm+ltx>V) 

and this gives 
Pm+ifcy) = Pm*+i(x,y) 

by (1) and by Lemma 3. This proves that (3) holds, by mathematical induction. Hence we get Theorem 3. 
3. PASCAL FUNCTIONS WHICH CAN BE PASCALISED 

We now shift our attention to Pascal functions which can be "pascalised." Given a proper sequence of Pascal 
polynomials 
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\Pn(x,y)}n=0 e n * > 
form the associated array J a/j r= A. Now take 

Wn(x,v) 
Qn(x,y) 

dx 

to get a new proper sequence in Ft/.. Let j b/j \ = B be the associated Pascal array to this sequence. If we have 
the relation 

(9) bil^'H^V) 
we say | pn(x,y) i can be "pascalised" to the first order. If 

, . drpn (x,y) 
Qnfay) = ~ T - 7 

dxr 

and 
do) bij = aii[

i;r)n 

we say that the sequence ipn(x,y)l can be pascalised to the rth order. 

Theorem 4. A necessary and sufficient condition that a proper sequence of (k - 1)st order Pascal func-

tions ipn(x,y) \^=o can be pascalised to the first order is that 

fn/kj 

(11) Pn(x,y)='E aj[n-(kJ1jj-1)xn'kHyj 

1=0 
for some sequence of constants aj. 

Proof. We will first prove the theorem for the case k = 2. Consider the sequence i pn(x,y)\°^=of and 
assume that the identity holds for/7 = ft 7, 2, -,m. We have then 

[m/2] 

(12) 

Now let 

which gives 

(13) 

Pm(x.y)* £ ajfn-j-^x^t-'yJ'. 
J=o 

[(m+1)/2] 

Pm+l(xfV)= J2 *fsn(mrJ)xm-2JyJ 

*Pm+i(x,y) 

j=o 

[(m+1)/2] 

i-0 

[m/2] 

dx 
1=0 

= E af,m(mr/)xm-2<'-1yi(m-2j) 

Now comparing coefficients in (12) and (13) and using (9) we get 

which gives 
aj,m ~ aj 

establishing part of the theorem for k = 2. The converse can be proved by retracing the steps. 
Now, once the theorem is proved for the first order (k= 2), it holds for any k > 1, for given a proper sequence 

of Pascal functions of (k - 1)st order, we can find its associated sequence of first order. The Pascal arrays for 
the derivatives of these two sequences is the same since the operator d/dx will operate independently in the ex-
pansion of pn(x,y) with respect to coefficients in the associated Pascal array. This completes the proof of the 
theorem. 
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Theorem 5. If a proper sequence of kth order Pascal functions can be pascalised to the first order, then all 
their associated sequences can be pascalised to first order. 

Proof. Given in the last paragraph of the proof of Theorem 4. 

Theorem 6. If a proper sequence of kth order Pascal functions can be pascalised to first order, they can 
be pascalised to any order. 

Proof. By arguments similar to the above, it is enough if we prove it for k = 1. Furthermore, it is enough 
to prove the theorem for the special case ay = 1 for differential operators are unaffected by constant multiples. 

We know from Theorem 4 that the first-order proper sequence of Pascal functions which can be pascalised to 
first order can be put in the form 

[n/2] 

Pn(*>Y) = JL ln-j-1)xn-2f-'y<'aj. 
1=0 X 

Now, as mentioned, aj~ 1, so thatpn(x,y) = Fn(x,y), the Fibonacci polynomials. We then have 

, . [(n+r)/2] [ n + r - j \ yn+r-2jJ 
J_ Wn+r+l(x,V) = _/_ y » _9_ \ j I X V__ 
r! *vr r! *-* ,vr r! 

j=0 ax 

n+r-2j>0 K ' 

which resembles (9) proving our theorem for Fibonacci polynomials, and so for Pascal functions. We demon-
strate our result with the following: 

Pascal Array for Fn (x,y) Pascal Array for — -—-

I 1 
I I 2 2 
1 2 1 3 6 3 
1 3 3 1 4 12 12 4 
1 4 6 4 1 5 20 30 20 5 

No te l : (2,2) = 2(1,1); (3,6,3) = 3(1,2,1); (4,12,12,4) = 4(1,3,3,1); - . Each row has a common factor. 
Note 2: Theorem 4 also says that each column has a common factor ay. In the above all the ay = 1. 
Note 3: The Pascal array for [dFn(x,y)]/ax is also the Pascal array for 

n 

YJ Fk(x,y)Fn..k(x,y) 
k=0 

for both are equal by Theorem 1. 
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