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The opinion of scientists on Bode's rule falls into several camps. The computer work of Hills [1 , Fig. 2] 
proves that an average period ratio exists and lies in the range 9/4 <P < 3. Some think there is a reason for this 
[2, 13], while others such as Lecar [3] think that the distances are random subject to the restraint of not being 
too near to each other. The idea that the asteroids were once a planet has been disproven [4] . The interested 
readership may consult any of the several summaries of physical theories of the origin of the solar system 
[6, 7 ,8 ,9 , 10, 11]. Almost all theories proposing specific distance rules are discounted (e.g., Blagg's 1.73 rule 
[9 ] , Dermott's rules [12]) by almost all scientists because they have too many independent parameters and 
lack any logical basis. More than two parameters is too many. The only models not discounted in this way are 
von Weizsacker's [see 5] , the author's [13, 14] and perhaps Schmidt's [see 7] . Von Weizsacker proposed a sys-
tem of eddies of ellipticity = Vi lubricated by smaller eddies. One can derive the equation: distance factor = 
tan2 [TT (N + 1)/4N], where N is the number of eddies in a ring. If the first law of scientific reasoning is that 
equations should balance dimensionally, then the zeroth law should be the principle of Occkham's razor-the 
paring away of unnecessary assumptions. The mathematical theory in [16] is now given a logical derivation. I 
begin this essay by a study of first principles. 

1. PRINCIPLES 
I insist that satellite and planetary systems: 
i. are discrete and therefore discrete algebra should be used, namely a difference equation, 

ii. have at most two boundary conditions (B.C.) and therefore 

(18) 82Zm = jZm+cZm_1 , 

where J,c are constants and 52 = A - V = A\7 is the central difference operator, 
iii. consist of one primary, a pair of secondaries which we ignore and the rest tertiary masses, 
iv. by the Commonality Principle must all satisfy the same spacing law, 
v. may equally likely have pro or retrograde outer satellites since retrograde bodies are not irregular, 

vi. are stable due to weak (gravitational, tidal or gyroscopic) non-dissipative forces and hence, 
vii. the relevant variable is the frequency of nearest approach, the synodic frequency, Y, where 
(19) Ym+h = Zm+1-Zm with h = 1/2 

viii. cannot have B.C. in empty space and hence they must reside in the primary which means that the recipro-
cal period sequence, Zm, must turn around near the outermost body and be asymptotic to the inner bodies up-
on both leaving and returning to the primary. Alone this restricts us to even order difference equations. It 
forces the roots of (18) to be reciprocal pairs and by the theory of equations c = 0. Thus 

(20) 8*Zm=jZm. 

To elucidate, values of a = j + 2 equal to ±2 give arithmetic progressions, and ±3 gives finite exponential (En) or 
alternate FL numbers, and -t6 gives alternate Pell numbers. The sequence ••• 11, 12, 16, 24, ••• is given by /= %. 
The data on near-commensurabilities are not significant [15] if the peculiar ratios of 2 and 4 are omitted. 
ix. Intuitive considerations of stability require the minimization of the number of mutual perturbations be-

tween adjacent satellite orbits. This will obtain if adjacent periods are coprime. This, as is proven later, deter-
mines/to be an integer. Now we can determine the value of / 

x. The forces are attractive so the largest root of (20) should be as small as allowed; thus a = ±3. Assuming 
that the Sun-Jupiter distance is fixed then a better way to state point (x) is that it is the minimization of the 
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potential energy of the tertiaries with respect to their secondary. Thus satellites try to get as close to their sec-
ondaries as other conditions (ix) will allow. Now a = 0 gives two constant sequences and so is trivial and a - ±1 
gives cyclical sequences of periodicities 6 and 3 and so is also trivial. Arithmetic progressions, a = ±2, are also 
trivial. Hence a = ±3, i.e., j = +1 o r - 5 . I first used bisected FL (Fibonacci Lucas) sequences in a letter [17]. 
xi. I assert that only one physical B.C. exists which must equal both matematical B.C. Therefore 

(21) Z0 = AZM = B.C. or VZ0 = ZM = B.C. 

which differ only in notation. This is equivalent to GQ = GJ\J in [16]. And from point (x) we have 

(22a,b) 8*Zm = Zm or 82Zm = -5Zm, 

where the " - 5 " case corresponds to outer satellites that are alternately prograde and retrograde. When M is in-
finite, Eqs. (21) and (22a) give sequenced of [16]. Writing v = y/5 for brevity we have 

(23a) 5v + 7 2v+3 v+2 v + 3 2v + 7 5v+18 13v+47 34v+123 89v +322 

(23b) -3v-4 -v-1 0+1 v+4 3v+ll 8v+29 21v + 76 55v+199 

(24) Nept X Uran Satur (Jup) Astrea Mars 

(25) / = -7/7 -3h h 5h 9h 13h 17h 

where either sequence may be regarded as the first-order differences (synodic frequencies) of the other. Se-
quence (23) gives an earth value of 521. For convenience, not rigor, sequence (24) has been placed parallel to 
(23). The index h = %. 

2. CONCEPTS 

A FL sequence, Hn, cannot be expressed as a function of 52 and / alone since 

(26) (A+ \f - l)Hn = 0 . 

But a finite exponential (bisected FL) sequence, En, satisfies 

(27) (fr-l)En = 0. 

Further, define a sequence, E'n, such that 

(27a) (82 +5l)E'n = 0 . 

Now let Zn be a bisection of Gn (Eq. 1 and Table 1 of [16]). Then Zn satisfies (27). If Zn represents the real 
reciprocal periods of satellites or planets this can be written as a minimum principle^ 

(28) £ (8*-l)Zm - 0. 

We may state this in words. A system of satellites (planets) much lighter than their primary tries to act as if 
their synodic frequencies correspond to real bodies with their synodic frequencies in turn being the reciprocal 
periods of the original bodies. This is true even if all the bodies do not revolve in the same sense. If they are 
alternately pro- and retro-grade we can use (31). Thus (28) gives a closed system having a finite number of 
sidereal (true) and synodic frequencies. 

Now in point (xi) we could not have written ZQ = AZQ since that leads to monotonically increasing sequences. 
Now this point, namely (21) which is the same as Eq. (1) GQ= GN led via the theorem in [16] to the beautiful 
closure relation (14) £1"S, = (-1)f~hS.-,\ This immediately gives by taking ratios 

(29) (Sf+2 + Si)/(Sj + Sj-2) = S-f- / JS /./ = (S-i-2 - S-i)/(S-i - S2-i) • 

Now if satellites are alternately pro- and retro-grade then we may interpret the first pair of (29) to mean that 
the ratio of adjacent synodic frequencies (since Sj is now negative) equals the ratio of the sidereal frequencies 
of two other members of the bisection of S aside from a (-1). Real satellite systems have a finite number of 
bodies but the difference in the ratios given by [S] and {G33} for example is less than \ti~6. Hence (29) is an 
excellent approximation to the finite cases. 
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It is easy to show that the ratio of adjacent terms in (23b), 

Snh+l/Snh-1 = (Ln + v)/Ln-2 = Ln+2/(Ln-v), 

where mod (n, 4) = 3. Similarly the ratio of adjacent terms in (23a) is 
Snh + l/Snh-1 = (Ln-vJ/Ln-2 = Ln+2/(Ln + v), 

where mod (n, 4) = 1 and where (25) is the index. For completeness we may define the double bisection of an 
FL sequence, Dn , by 
(30) (82 ~5l)Dn = 0. 

Now a system of alternately pro- and retro-grade satellites satisfies an £ primed sequence, E'n. But the synodic 
frequencies are no longer differences (since every other term is negative) but sums. Application of the sum-
ming of adjacent terms twice is equivalent to the operator(82 +41). Hence in place of (28) we may write 

(31) £ (o2-Dz'm - 0, 

where o is the central sum operator defined by 
ofn = fn+h + fn-h * 

where fn is any sequence whatsoever. It is then easy to show that 

(32) o2 = 41 + b2. 

Z'is a bisection of S or G but with alternate terms multiplied by (-1). A Z' sequence satisfies (27a). 
The theory herein has been predicated upon: The Commonality Principle, The Simplicity Principle, and 

the assumption that the physical reason for the stability of tertiary orbits is the avoidance of low-order com-
mensurabilities (ALOC). J. C. Maxwell approached the motion of molecules in air in a similar vein of which 
James Jeans wrote [19, pp. 97-98] "...by a train of argument which seems to bear no relation at all to mole-
cules or to their dynamics,... or to common sense, reached a formula which according... to all the rules of 
scientific philosophy ought to have been hopelessly wrong. ...was shown to be exactly right." 

3. PREDICTIONS 

Dermott [12] ignored the outer Jovian and Saturnian satellites. I have chosen to give them an important place 
in this paper. The reciprocal period law is the only theory to make very narrow predictions. There is a blank 
midway between Saturn's Phoebe and lapetus in Table 2 of [ 16]. Hence a Saturnian satellite(s) of (mean) period 
207.84 < P < 208.03 day is predicted. I propose to call it Aurelia. If it is ever found, it would constitute proof 
positive of the theory herein. The allowed range is 0.1 percent of the numbers but I regard 1 percent as accept-
ible. Similarly a stable orbit in the Jovian system is likely at 97 day with much less likelihood of another at 37 
day because of its proximity to the Galilean quadruplet (secondaries). 

For the Sun, Jupiter, Saturn their secondaries are Jupiter, the Galilean quadruplet, Titan+Hyperion, respec-
tively. The theory says little about the secondaries. Hence the distance between the primaries and secondaries 
and their mass ratio must be determined by the properties of the proto-solar system cloud, namely its mass, 
spin, moment of inertia and magnetic field. We infer that the proto-solar system soon formed two clouds of 
cold dust and gas. The larger became the Sun and the smaller became Jupiter and Saturn. These then captur-
ed enough material to form the other planets and comets by coalesence. During the late phases when dissipa-
tive forces were no longer important, the reciprocal period rule would begin to operate. The Kirkwood gaps 
have prevented the coalesence of asteroids into a planet. Gaps exist at 3/8, 4/9, 5/11 of Jupiter's period as well 
as at 1/3, 2/5, 3/7 and 1/2. In fact the gap at 3/8 is only 2 percent from the predicted asteroidal planet See 
[18, p. 97]. 

The physical B.C. (point XI) may: (a) lie in the mean angular velocity of the prinary, (b) be a mean of the 
spins of the primary and secondary, (c) lie in the ter'tiaries as a whole in which case they constitute a self-
enclosed system, (d) be the period of a hypothetical satellite that skims the primary's surface, or (e) otherwise. 
At the moment, I prefer (c). 
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4. VENUS 
The synodic period, y, of a superior (exterior) body of period z > 1 is given by 

(33) 1/z+1/y = 1. 

The following relations [18, p. 51] are interesting. I use ratios for clarity. Choose the Venu&ian sidereal (true) 
year, 224.701 day, to be the unit of time. Then to better than 5 significant figures the earth's period is 395/243 
(13/8 is less accurate) and the rotation period of Venus is -79/73 (clockwise). Thinking of ourselves as Venus-
ians, then Venus is fixed and the Sun and Earth appear to revolve around us. We have three frequencies: 1, 
73/79, 243/395 to be added in pairs. The first pair gives 79/152 for one Venusian solar day. The first and third 
using (33) gives 395/152 for the earth's synodic period (584 da). The latter two give 395/608 for the time be-
tween successive Earth transits. These frequences 152/79, 608/395, 152/395 are in the exact ratios 5, 4, 1. 
Hence during every 584 day the same spot on Venus faces the Sun 5 times and the Earth 4 times. Venus must 
be aspherical so that torque forces can cause this. Tidal forces tend to pull a body apart and are inverse cube, 
But to align two prolate bodies one of whose axes is.0 away from the line joining them requires a sin 6/d* 
force which is very weak, yet over long time periods must be sufficient. 

In passing we give the continued fraction expansion of the distance factor derived from Kepler's III law. 

1.8995476269 •••= 1 + r L + ^ + ^ + ^ + ^+r- + T- + ^ + ^ + r - + ' -1+ 8+ 1+ 21+ 4+ 1+ 7+ 1+ 1+ 1 + 
whose convergent is 1 + 25253/28073. The first useful convergent is 416/219. 

5. COPRIME SEQUENCES 

If the recurrence Pn+i = (integer)^ ±Pn-i holds we have a Coprime sequence because it satisfies the follow-
ing theorem which is a generalization of one in [20, p. 30]. As an example viz. 0, 1, 4, 15, 56, 11-19, 780, 
41-71, - . Consider Pn+1 = bPn + cPn,-,. 

Theorem. Of all two-point recurrences only those with the middle coefficient b an integer and c = ±1 
have coprime adjacent terms given that an initial pair, PQ and Pf say, are coprime. 

Proof. The proof obtains by postulating the contrariwise proposition. Let c = 1. LetPn+i and Pn be divis-
ible by some integer d. ThenbPn is divisible by d and so also is Pn_1 = Pn+1 - bPn . But then 

Pn-2 = Pn-bPn^ 

is divisible by d and likewise all earlier terms by induction. Hence both PQ and Pj are divisible by d which con-
tradicts the assumption which says that at most one of PQ and Pi are divisible by any number. Hence the 
theorem must be true. 

Choosing c = -1 changes no essential part of the argument. 
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BINET'S FORMULA GENERALIZED 

A. K.WHITFORD 
Torrens College of Advanced Education, Torrensville, 5031, South Australia 

Any generalization of the Fibonacci sequence {Fn} = 1, 1, 2, 3, 5, 8, 13, 21, ••• necessarily involves a change 
in one or both of the defining equations 

(D F1 = F2= 1, Fn+2 = Fn+1 + Fn (n > 11 

Here, however, we seek such a generalization indirectly, by starting with Binet's formula 

\ n ii / F \ n 

f~n ~~ ~" 

7 5 <" > 1> 

instead of (1). Suppose we define, for any positive integer^, the sequence Gn by 

Jn 1= (n (2) Gn = A__£___/ _1___^___^_ (n > 1). 

Thus [Gn] = {Fn} in the case/7 = 5. We can also write 

(3) Gn = ^ X - (n > V, 

where 

2 , P 2 

are roots of the equation 

(4) x2_x_^jy0 

Corresponding to (1), we now have the equations 

(5) G1 = G2 = I Gn+2 = Gn+1 + {P-f1) Gn (n > V. 

Proof. Clearly a - $ = \fp and a +0 = /, so that (3) implies 

GI = CL-J-= i G2 = (SLzm+1) = 7. 
VP VP 

[Continued on page»14.] 


