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The purpose of this paper is to investigate Fibonacci-like groups and use them to show that for any odd prime
p, there are Fibonacci-fike sequences, in fact an infinite number of them, with a maximal period modulo p. At
the conclusion of this paper, we will present a program to show how one might apply Fibonacci-like groups to
problems concerning primitive roots modulo an odd prime. One of our main results will be to prove that the
exponent to which any non-zero residue r of an odd prime p belongs is equal to either the period ar one-half
the period moduio p of a Fibonacci-like sequence, except when both p = 1 (mod 4) and r = £/~ 7 (mod p). We
will give a proof of this theorem and draw some consequences. To continue, we will need a few definitions.

Definition 1. A primary Fibonacci-like sequence {J,,}, hereafter called a P.F.L.S., is one which satisfies
the recursion relation: J,+7 = aJ,, + bJ,-7 for some non-negative integers, 4, 4, and for which Jp=0, J7=17,
and /o = a.

Deﬁnition 2. A generalized Fibonacci-like sequence, hereafter called G.F.L.S., is a Fibonacci-like se-
quence {/(,,} in which K and K7 are arbitrary non-negative integers.

Definition 3. ufa, b, p)isthe period modulo p, p an odd prime, of a P.F.L.S. in which
Jnit = alp+bn_g.

Itis the first positive integer 7 such thatJ, =0 (mod p) and Jp+7=J7 =1 (mod p).

Definition 4. afa, b, p), called the restricted period of a P.F.L.S. modulo p, is the least positive integer m
such that

IJm =slg=10 and Im+1 =847 =5 (mod p)

for some residues. Then s(a, b, p) = s will be called the multiplier of the P. F. L. S. modulo p.

Definition 5. Pla b, p)is the exponent of s(a, b, p) (mod p). ttis equal to u (a, b, p)/afa, b, p).

The next fact that we will need is that if (a* +4b/p) = 0 or 1, where (p/g)is the Legendre symbol, then the
period of the G.F. L.S. modulo p, beginning with either

(Kp =1 Ky =(a+a*+ab)/2)  or  (Kg=1 K;=(a—/a*+4b)/2),
forms a group under multiplication (mod p). The G.F.L.S., reduced modulo p, beginning with
(1, (a+/a* +4b)/2)
will be designated by {/I/In} and the G.F.L.S. beginning with
(1, (g —Ja® +4b)/2)
by {M,Q}. The specific generalized Fibonacci sequence beginning with
(1,(1+/5)/2), and (1,(1-/5)/2),

reduced modulo p, will be designated by {H,,} and {H}}, respectively. Generalized Fibonacci sequences satisfy
the same recursion relation as the Fibonacci sequence.
To prove that these form multiplicative groups modulo p, note that the congruence:

bc +acx = cx* {mod p)

leads to the congruence:
35
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1

bex T # acx™ = ex"*7 (mod p).

This has the solutions
x = Ja + hyfa® +4b (mod p).

Letting £ = 7, we see immediately that we obtain the group generated by the powers of x. These sequences will
be called Fibonacci-like groups modulo p and the sequences {H,,} and {H,Q} will be called Fibonacci-groups
modulo p. Note that these sequences have both the additive structure of a Fibonacci-like sequence and the mul-
tiplicative structure of a cyclic group. For an example of a Fibonacci-like group, let a= 7 and 6 = 3. Then
a Fibonacci-like group exists iff 2
(a< +4b/p) = (13/p) = 0 or 1.
If p =17, then asolution of

x = (1+13)/2 = (1+8)/2 (mod 17)

isx =13 (mod 17), and this gives rise to the Fibonacci-like group (1, 13, 16, 4).

Our method of proof of the main theorem will be based on the length of the periods of special types of
Fibonacci-like groups, namely those for which 6 = 1.

To demonstrate my method of proof, we will investigate the periods modulo p of the Fibonacci groups,
{Hn} and {H,’,}. Using the quadratic reciprocity formula, we can see that Fibonacci groups exist modulo p only
whenp =5 orp=+7 (mod 10).

Any generalized Fibonacci sequence {Gn} beginning with Gg=¢, G7=d, can be generated from the Fibon-
acci sequence {F,,} by the formula:

Gn = (d—C)Fn +CFn+7 .

Thus, all the terms of the two Fibonacci groups {H,} and {H} which are =1 (mod p) can be expressed as:

Hoy = ((1+5)/2)" = ((—1+/5)/2)Fpn + Fner = 1 (modp);
or:

I
Ii
il

Hpy = ((1=/5)/2)" = (—1—/5)/2)Fp + Fpsq

If £, =0 (mod p), then F,47 must be = 1 (mod p) and the n™ term of both the sequences {#,, } and {H}}
will be = 1 (mod p).
Note that the product of the n™ terms of the two Fibonacci groups modulo p, p# 5, is

((1+5)/2)"((1-/51)/2)" = —1" (mod p).

Let us now assume either H,, =7 or H}, = 7 (mod p) but that £, #0 (mod p). Then H, =+1 (mod p)ifH, =1
(mod p), or H, =+7 (mod p) if #;, =17 (mod p).
Let us assume that both H,, and H;, are = 1 (mod p). Then

Hy = ((=1+/5)/2)F, + Fheq = 1 (mod p),

7 (mod p).

and
Hyy, = ((=1—/B)/2)Fp+ Fper = 1 (modp).
Thus,
Hy,—Hpy = 5F, = 0 (mod p).
Since F,, # 0 by assumption, 5 =0 (mod p) and p must equal 5. If p = 5, then
(1+5)/2 =(1-5)/2 = % = 3 (mod 5),

and there is only one Fibonacci group. This group is {1, 3,4, 2} and has a period of 4.
Now, suppose p # 5 and F,, #0 (mod p). Then, either,

(1) Hoy = ((—=1+/5)/2)F, + Fpeq = 1 (mod p)
Hy = ((—1=/5)/2)F, + Fhe7=—1 (modp)

or

(2) Hp,
Hh

((=1+/5)/2)F, + Fpeq
((=1-/5)/2)Fp + Fpeq

—7 (mod p)
7 (modp).

i
LTl
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In both (1) and (2), by adding #,, and H}, we see that F, = 2F,47 (mod p). In (1), by subtracting H}, from
Hp, weobtain Fp =2A/5 and thus Fr+7 = 1A/5 (mod p). In (2), we observe that £, =—2A/5 and Fpp4q =
—1//5 (mod p).

Now, if £, =2F,+7, then

Fr-1 = Fny1— Fn = —Fpey (modp).

Ul

Note that
F2n = FnFI’l-7+FnFn+7 = Fn(Fn—7+Fn+7).

Thus, if £, =2F,+7, Fr # 0 (mod p), then F_7 + Frp7 =0and Fo, =0 (mod p).

Itis known that the only possibilities for 3(7, 7, p) are 1, 2, 0r 4. |1 3(1, 1, p) =4, then a(7, 1, p)is an odd
number. (See [2].) But, then Fp, =0, F,, #0 (mod p) can have no solutions since the zeros of £, (mod p) can
only occur at multiples of af7, 7, p). Thus, F, = 2F,+; (mod p) is not solvable if B(7, 1, p) = 4. Thus, if
B(1, 1, p) = 4, all solutions of H, = 7 or H;, = 1 (mod p) must be generated by F,, =0, Fp4+7 =1 (mod p), as
we have seen before. Thus, the order of the two Fibonacci groups modulo o must both be wf(7, 7, p)ifp # 5.

If8(1, 1, p) = 2, then al1, 1, p) =0 (mod 4) [2]. But the first solution for 4, or H;, = 7 generated by an
F, #0 (mod p) can only be n=%a(1, 1, p), if such a solution exists. This is true since n» must equal %k-al7,7,p)
for some odd integer k. Butboth Hy (s, 7,0y and Hyy(1,1,p) are = 7 (mod p). Thus, n divides

w1, 1,p) = 2a(1, 1,p).

Hence, k = 7 and n = %a(1,1,p). Butsincea(?, 7, p)=0 (mod 4), n = %a(1, 1, p) =0 (mod 2); and. the prod-
uct of H,, and #;, =—1" = 7 (mod p), not —1, a contradiction. Thus, if 87, 7, p) = 2, the order of both Fib-
onacci groups must be uf7, 7, p.

The last case occurs if (7, 1, p)=1. Thena(7, 1, p) =2 (mod 4) [2]. Hence, n = %a(7, 1, p) =1 (mod 2) is
the first place where either H,, or H;, can be =1 and £, # 0 (mod p). Then the product of #,, and

H; = —1" = -1 (modp).
Now, look at the two congruences:
Fon = Fa(1,10) = FnFn-1*+FnFne1 =0 (mod p)
and
Font1 = Fatt, 1,001 = F7+FFey = 1 (mod p).

Solving for F,, and Fj,+7, we see that
F, = +2A/5 and Frer-= BF, = £1A/5 (modp),

in agreement with earlier results. Thus, if 3(7,7,p) = 1, the period of one Fibonacci group is %af(7,7,p) and the
period of the otheris a(7,7,p).
We have now proved our first lemma.

Lemma 1. 1f (5/p) = 0 or 1, p an odd prime, then the periods of the two Fibonacci groups {H,} and
{H7} modulo p are both u(7,7,p) if B(7,7,p) = 2 or 4 and p # 5. If p = 5, the period of the unique Fibonacci
group is 4. [ B(17,1,p) = 1, the period of one Fibonacci group modulo p is af7,7,p) = u(1,1,p), while the period
of the other group is %u(7,1,p).

To generalize this result to other Fibonacci-like groups, it would be helpful if the product of the n # terms of
these sequences, {M,} and {M}}, were = —1" (mod p) as before. The product of the n™ terms of the two
Fibonacci-like groups is:

((a+Ja* +4b)/2)"((a —Ja* +4b)/2)" = (-b)" (mod p).

This product will be =—77if b = 7. From now on, in discussing Fibonacci-like groups {M,,} and {M,’,} modulo
p, b will equal 1 and (a*> +4/p) will equal 0 or 1.

If Kg=c, Ky =d are the first terms of a G.F.L.S., then this sequence can be generated from the correspond-
ing P.F.L.S. by the formula: K}, = (d — ac)JJ,, + ¢Jp+7. Hence, if b =17,

My = ((a+/a* +4)/2)" = ((—a +/a* +4)/2)Jp +Jpsq (mod p)
and
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My = ((a—<Ja* +4) /2)" = ((—a — Ja? +4)/2)Jp + Jp+7 (mod p).

We wili next need a few formulas for P.F.L.S. {J,,} with a and b unspecified. These formulas are simply gen-
eralizations of some familiar Fibonacci identities:

(a) Inetdpr = JF = (=1)""
(b) Jon = bndneg +dndnes
{c) Jon+1 = bJ,12+./5+1 .

These formulas can easily be proven by induction. If # = 7, we obtain exactly the same formulas as for the
Fibonacci sequence.

The method for finding the periods of Fibonacci-like groups with 4 = 7 is along the same lines as before.
B(a, 1,p) must be either 1, 2, or 4. To prove this let n = afa, 1,p). Then J,_1Jps7 — J,? =—1" {mod p).But
Jn =0 (mod p) and

Tdpy = Jpt1 — aly = Jpsg (mod p).

Thus, J2,, = 1" (mod p). £ 0 is odd, J2,, =—1" (mod p); /¥, , = 7 and 3(a, 1,p) = 4. (This also shows that
no term Jop+7 of a P.F.L.S. with b = 7 can be divisible by a prime p =—7 (mod 4) since (—7/p)=—1.)1f
J2 =T thendy =21 1fdpr1 =1, Bla,1,p) = 1. Jpsg=—1 (mod p), Bla, 1,p) = 2.

Let us now look at the terms of {#,} and {#}} which are =1 (mod p). As before if J, =0 (mod p), then
Jn+1 mustbe =1 (mod p) and both ¥,, and M}, = 7 (mod p). o

IfJ,, #0 (mod p) and hoth M, and M}, are = 1 (mod p), then we have: (\/a? +4M, =0 (mod p) and a*> +4 =
0 (mod p). But then there is only one Fibonacci-like group {M,} and M, = (a/2)" (mod p). Buta®+ 4 =
0 (mod p). Thus, a*/4 =(a/2)* =—1 (mod p). Thus, a/2 belangs to the exponent 4 modulo p if (a2 +4/p) =,
and the period of such a Fibanacci-like group (mod p) is 4.

Hence, if either M, or My, =17, J, #0 and a* +4 # 0 (mod p), then one of M,;, M, = 1 and the otheris =—1
{mod p). Solving for J,, and J,,+7, we see that J, .7 = %aJ,, and that

Jp = £2//a* +4, Jni1 = Baly = tal/a® +4 .
Also,
Vidpoy=dper — aly = bady — aly = —hady = —Jpey (mod p).

Thus, as before, if a* +4 # 0 {mod p), the first 7 > 0 such that M, or M/, = 1 (mod p} is generated by aJ,, #
0 (mod p), isn = %afa, 1,p), it it exists. |f 8(a, 7.p) = 4, then no such instance can occur since afa, 7,p/ is odd. If
B(a 1,p) =4, then ufa, 1,p) =4 (mod 8), since afa, 1,p) =1 (mod 2). ,

If Bfa, 1,0) = 2, then one can solve for J, and J,,+7 by the congruences: Jo, =0 (mod p), Jo,+7 =—1 (mod
p). Substituting back, one finds that the product of M, and M}, is = 1 (mod p) in contradiction to what we
have determined before. This also shows that %afa, 7,p) = 0 (mod 2), afa, 1,p) =0 (mod 4), and ufa, 7,p) =0
{mod 8).

If Bfa 1,p) = 1, we solve for J,, and J,+7 by the formulas: Jo, =0 (mod p), J2,+7 = 1 (mod p). Solving, we
find that o o

Jp = £2/\/a* +4, Jdn+1 = Fal, = ta/\/a* +4 (modp),

in accordance with our previous results. Note that this further shows that if §(a, 7,p) = 1, then (a* +4/p) = 1.
Also, if we substitute back to determine M, and M;,, we determine that their product = —1 (mod p). This
shows that %afa 7,p) = 1(mod 2) and afa, 1,p) = 2 (mod 4)if B(a, 1p)= 1.

Thus, we have now proved our second lemma.

Lemma 2. The periods of the Fibonacci-like groups {Mn} and {M,;} modulo p are both ufa 7,p) if
Bla 1,p0)=2ord and (a> +4/p) = 1. If (a> +4/p) = 0, then the period of the single Fibonacci-like group is 4. If
a> + 4/p) = 1 and f{a, 1,p) = 1, then the period of one Fibonacci-like group is %u (s, 7,p) while the period of
the other group is pfa, 7,p).

The remainder of this paper will be devoted to finding for a given odd prime p all the P.F.L.S. with 0 <a <p,
b=1 and (a> +4/p) = 0 or 1, and studying the Fibonacci-like groups that they generate. .
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To find all 0 < a < p such that (a? +4/p)= 0 or 1, all one needs to do is find all solutions of the congruence:
x* —a* = (x+a)(x —a) =4 (modp).
There are p — 7 sets of solutions for x and a, generated by
(x +a) =k, (x —a) =4/k (modp), l<k<p-1.
In general, 4 sets of solutions lead to the same x? and a2
(x+a) =k (x—a) =4k (x+a) =4/k (x—a) =k
(x+al = -k (x—a) = —4/k (x +a) = —4/k, (x—a) = —k (modp).

Since k £ 0, k £ —k and4/k #—4/k (modp). However, 4/k = k iff k=22 (mod p). Also, —4/k =k iff k =+/4
(mod p). Combining these facts with the fact thatp, an odd prime, = 1 (mod 4) iff both +4 are quadratic resi-
dues modulo p, one finds that the number of solutions of x> =a2 +4 (mod p) isn + 1, if p = either4n + 1 or
4n + 3.

| next claim that the set of numbers of the form ((a £</a* + 4)/2), where 0 <a < p and (a> +4/p) =0 or |,
gives rise to all the non-zero residues of p. In general, (a /a2 + 4)/2 gives rise to two distinct residues, a and
—a, exceptin the case where a = 0 (mod p). Combining all these conditions with the fact that a> +4 =0 (mod p)
is solvable only if p = 1 (mod 4), we see that all the non-zero residues are obtained if the congruences:

(a, £ JaTF3)/2 = (a, £ JaT 7412
imply thata, =a, (mod p).
In each of the different cases, if we put the square roots on the same side of the congruence, square both sides
and collect terms, we obtain the congruence:

43% — 8a,a, +4a? = 4(a, —a,)* = 0 (modp).
Thus, a, =a, (mod p). ‘
Combining our previous results, we are now ready to state our main theorem. The P.F.L.S. with recursion re-
fation: Jp+7 = aJy + bJp- 7 will be denoted by {Ja,b}'

Theorem 1. 1 pis an odd prime equal to either 4n + 7 or 4n + 3, then there are 2n + 7 P.F.L.S. {./a,1}
with @ <a <p — T and b = 1, such that (a®> +4/p) = 0 or 1. These generate p — 7 Fibonacci-like groups, the
first terms of which are equal to each of the p — 7 non-zero residues modulo p.

The exponent e to which a non-zero residue r belongs modulo p is equal to the period of the Fibonacci-like
group of which it is the first term,

(1) 1fe=1(mod 2), thene = %u(a 1,0) for some P.F.L.S. {J5 7} with a <p and Bfa, 1,p) = 1.

(2) Ife=2(mod4), thene = ufa 1,p) for some P.F.L.S. {Ja,7} witha <p andf(a 1,p)=1.

(3) Ife#4,e=4(mod8), thene = u(a, 7,0) for some P.F.L.S. {J5 1} witha <p and (3, 7,0) = 4.

(4) 1fe=0(mod 8), then e = u(a, 7,p) for some P.F.L.S. {J,, 1} witha <p and B(a, 1,p) = 2.

(5) If e =4 then there exist ¢(4) = 2 P.F.L.S. {Ja,I} with a < p, afa, 1,p) = p, and f(a,1,p) = 4. Each
P.F.L.S. generates a Fibonacci-like group with a period of 4.

This theorem leads to a number of interesting corollaries. Unless stated otherwise, p is an odd prime, b =17,
and (2> +4/p)=0o0r 1.

Corollary 1. 1f0<a<p— 1, andb =1, then the period of any P.F.L.S., {J, 7}, divides p — 7, is even,
and is not equal to 4. If J dividesp — 7 and d = 2 (mod 4), then the number of P.F.L.S. {Ja,1}, a <p, with
Ula 1p)=dis ¢(d) If d # 4 and d =0 (mod 4), then the number of P.F.L.S. {Ja, 1}, a<p, with ufa 1,p)=d
is 5o (d). :

Proof This follows from Theorem 1 and the fact that the number of residues belonging to a particular ex-
ponent e modulo p, where e dividesp — 7, is ¢ fe).

The next corollary is very important. It states that for any odd prime, p, there exist an infinite number of
P.F.L.S. with the maximum possible period modulo p,

Corollary 2. 10 <a<p, p#5 then the number of P.F.L.S. {a,7) with a maximal period of p — 7 is
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%plp — 1) if p— 1=10 (mod 4). If p — 7 =2 (mod 4), then the number of P.F.L.S. {/, 7} with a maxi-
mal period modulo p of p — 7is ¢(p — 7). |f p = 5, then the P.F.L.S. {J1,1} = {Fp} and {44, 1} each have
periods of 20. (These periods are maximal since (72 +4/5) = (4> +4/5)=0and B(1,1,5) = 3(4,1,5)=4.) If a
now ranges over the non-negative integers, then there are an infinite number of P.F.L.S. {Ja, 7}' with a maximal
period modulo p.

Proof. If (a> +4/p) = 1, then one can generate a Fibonacci-like group whose period is at mostp — 7 and
which equals u(a, 7,p) Thus, ufa 7,p) is at most p — 7. If a=d (mod p), then the P.F.L.S. {Ja,7} and {Jd,7}
have the same period modulo p. The rest follows from Corollary 1.

If (a> +4/p) = —1, then Corollary 2 does not apply, but we can still find isolated cases of P.F.L.S. {Ja,1}
with maximal periods. If (a* +4)=—1and 3(a, 1,p) = 2 or 4, then uu(a, 1,p) can be at most 2(p + 7). Examples
are: (5/7) = =1, (1,1,7) =2 and u(1,1,7) = 16; and (5/13) = —1, 8(1,1,13) = 4, u(1,1,13) = 28. Note that i
Bfa 1,p) = 1, then (a* +4/p) must = 1 as we have shown earlier, and the maximal period modulop isp — 1.

Corollary 3. f0<a<pandp=3(mod4), then every P.F.L.S. {J, 7} has B(a 1,0) = 1.
Proof. This follows from the fact that p — 7 =2 (mod 4).

Corollary 4. 1f 1<a <p, then no P.F.L.S.{J,, 1} has 8(a, 7,p) = 7 iff p is a Fermat prime = 22" 1108
a =0 (mod p), then one gets the trivial P.F.L.S. (0,1,0,1, -+ ) with ((a, 7,p) = 1. This gives rise to the 2 trivial
Fibonacci-like groups, {17} and {—1"}.

Corollary 5. 1f0<a<pandp- 1=2"T1p;, pi =1 (mod 2), then the number of P.F.L.S. {/a, 1} with
Bla 1,p)=Tis i

> ool =2=1 = T1 p,-ki .
dkﬁ'-’ 2 i

The number of P.F.L.S.{J, 7} with B(a,7,p) = 2 is

DY old) .
d}p—I
d=0 (mod 8)

The number of P.F.L.S. {J,, 7} with B(a, 7,p) =4 is

% > old).
dip-1
d=4 (mod 8)
Corollary 6. 110 <a <p and e is an even number dividingp — 7, then the summation of all the a's of
P.F.L.S. {Ja, 7} with w(a, 7,p) = e is = 0 (mod p). In addition, the summation of all the a’s of P.F.L.S. {Ja'7}
with u(a, 7,p) dividing e is = 0 (mod p).

Proof. One can prove this by using the fact that if r belongs to the exponente modulo p, then so does
1/r. Combine this with the fact that if r = (a £ \/a? + 4)/2 (mod p), then 1/r =(—a £/(—a)* + 4)/2 (mod p),
and we obtain the result.

One of my purposes in writing this paper was to see if | could get any general results on the relation between
residues and the primes of which they were primitive roots. Unfortunately, | was unable to obtain any new re-
sults. But | will close this paper with an indication of how one might use P.F.L.S. and Fibonacci-like groups to
obtain results about primitive roots. | will prove, using my method, the well-known result thatifs and 2s + 7
are primes, s = 3 (mod 4), then all quadratic non-residues are primitive roots modulo 2s + 7, excluding —1.

I will use a result of Robert Backstrom [1], to prove this. He stated that if s is a prime and p = 2s + 7 is prime
such that (—b/p) = —1 and (a*> +4b/p) = +1, then afab,p) =p — 1. If b= 1, then p = 3 (mod 4), since (—b/p) =
—1. Hence, p — 7 =2 (mod 4). Thus, every P.F.LS.{J5 1}, 0 <a <p, (a* +4/p)=1,hasPla,1,p)= 1 by
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Corollary 3. The only periods that a P.F.L.S.{Ja, 7} can have is 2 or p — 7, the only even numbers dividing
p — 1 Itiseasily seen that %(p — 3/ of these P.F.L.S. have a period of p — 7, each giving rise to one Fibonacci-
like group with a period of %2(p — 7) and one with a period of p — 7. Those with periods of %(p — 1) correspond
to the quadratic residues of p excluding 1, and the others correspond to the quadratic non-residues, excluding
-1
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SOLUTION OF A CERTAIN RECURRENCE RELATION

DOUGLAS A. FULTS
Student, Saratoga High School, Saratoga, Califomia

At the recent research conference of the Fibonacti Association, Marjorie Bicknell-Johnson gave the recurrence
relation
(1) Pr1=2Pr=PrgtPr2 =1, r=234 -,
that represents the number of paths for r reflections in three glass plates (with initial values Py =1, P> =3 and

P3=6). | submit here an explicit expression for P,, and also obtain its generating function.
Based on the usual theory for such relationships, the general solution of (1) can be given in the form

(2) P. = C1R}+CaR5+C3R%,
where the quantities Ry, B2 and A3 are the roots of the equation
(3) RS -2R%°-R+1=0,

and the constants Cy, C2 and C3 must be determined to fit the specified conditions.
This cubic, whose discriminant is equal to 49, has three real roots, and they can best be expressed in trigono-
metric form, as texts an theory of equations seem to say. The roots of (3) are

Rq =f;[7+\/7cos¢>]
(4) 32=§~[Z—J7cos¢+\/2—75in¢]
Rz = é [2—J7 cos¢— /21 sinp]
where
=1 _1
(5) ¢ 3arccos(2\/7l>,

Such roots can be represented exactly only if they are left in this form. (Approximations of them are
Ry = 2.2469796, R, = 0.5549581, and ARz = —0.8019377.)
The constants in the solution (2) are then found by solving the linear system

[Continued on page 45.]



