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The purpose of this paper is to investigate Fibonacci-like groups and use them to show that for any odd prime 
/?, there are Fibonacci-like sequences, in fact an infinite number of them, with a maximal period modulo/7. At 
the conclusion of this paper, we will present a program to show how one might apply Fibonacci-like groups to 
problems concerning primitive roots modulo an odd prime. One of our main results will be to prove that the 
exponent to which any non-zero residue r of an odd prime p belongs is equal to either the period or one-half 
the period modulo/7 of a Fibonacci-like sequence, except when both/7 = 1 (mod 4) and r = ±^~l (mod/?). We 
will give a proof of this theorem and draw some consequences. To continue, we will need a few definitions. 

Definition 1. A primary Fibonacci-like sequence {Jn}, hereafter called a P.F.L.S., is one which satisfies 
the recursion relation: Jn+i = aJn + bJn-j for some non-negative integers, a, b, and for which JQ = Q, J? = 7, 
antiJ2 = a. 

Definition 2. A generalized Fibonacci-like sequence, hereafter called G.F.L.S., is a Fibonacci-like se-
quence {Kn) in which KQ and Kj are arbitrary non-negative integers. 

Definition 3. \sia, b, p) is the period modulo p, p an odd prime, of a P.F.L.S. in which 

Jn+l = aJn +bJn-i. 

It is the first positive integer/7 such that J^ =0 (mod p) andJn+i =Jj = 7 (mod/?). 

Definition 4. a(a,b,p), called the restricted period of a P.F.L.S. modulop, is the least positive integerm 
such that 

Jm = SJQ = 0 and Jm+1 ^ sJ-j = s (mod/?) 

for some residue s. Then s(a, b, p) = s will be called the multiplier of the P. F. L S. modulo p. 

Definition 5. &(a, b, p) is the exponent of s(a, b, p) (mod p). It is equal to pi la, b, p)/a(a, b, pi 

The next fact that we will need is that if (a2 + 4b/p) = 0 or /, where (p/q) is the Legendre symbol, then the 
period of the G.F. L.S. modulo/7, beginning with either 

(KQ = 7, K1 = (a + s/FT4b)/2) or (K0 = 1, K1 = (a - ^+Tb)/2), 

forms a group under multiplication (mod/7). The G.F.L.S., reduced modulo/?, beginning with 

(I (a + ^2~T~4b)/2) 

will be designated by {Mn}
 ar|d t n e G.F.L.S. beginning with 

(I (a - y/'FT4b)/2) 
by {M'n}. The specific generalized Fibonacci sequence beginning with 

(1,{1+y/5)/2), and (1,(1-sj5)/2)t 

reduced modulo/7, will be designated by [Hn] and {H'n), respectively. Generalized Fibonacci sequences satisfy 
the same recursion relation as the Fibonacci sequence. 

To prove that these form multiplicative groups modulo /?, note that the congruence: 

be + acx = ex2 (mod/?) 
leads to the conqruence: 
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bcxn~1+acxn ^cxn+1 (modp). 

This has the solutions 
x = V2aiL1/2^T4b (mod/?). 

Letting c = 7, we see immediately that we obtain the group generated by the powers of x. These sequences will 
be called Fibonacci-like groups modulop and the sequences {Hn} and [Hn] will be called Fibonacci-groups 
modulo p. Note that these sequences have both the additive structure of a Fibonacci-like sequence and the mul-
tiplicative structure of a cyclic group. For an example of a Fibonacci-like group, let a = 1 and b = 3. Then 
a Fibonacci-like group exists iff 0 

(a2+4b/p) = (13/p) = 0 or 7. 
If p = 17, then a solution of 

x = (1±.s]~l3)/2 = (1±8)/2 (mod 17) 

is A- = 13 (mod 17), and this gives rise to the Fibonacci-like group (1, 13, 16, 4). 
Our method of proof of the main theorem will be based on the length of the periods of special types of 

Fibonacci-like groups, namely those for which b = 1. 
To demonstrate my method of proof, we will investigate the periods modulo p of the Fibonacci groups, 

[Hn] and {Hn}. Using the quadratic reciprocity formula, we can see that Fibonacci groups exist modulo p only 
when/7 = 5 orp =±1 (mod 10). 

Any generalized Fibonacci sequence {Gn} beginning with GQ = C, GJ =d, can be generated from the Fibon-
acci sequence lFn\ by the formula: 

Gn = (d - c)Fn + cFn+ 7. 

Thus, all the terms of the two Fibonacci groups {Hn} and [H'n} which are EE 1 (mod/7) can be expressed as: 

Hn =E ((1 + ^5)/2)n EE ((-1 + sf5)/2)Fn + Fn+1 s 7 (mod/7); 
or: 

Hn = ((1-j5)/2)n EE (~1-sj5)/2)Fn + Fn+1 EE 7 (mod/?). 

If Fn = 0 (mod p), then Fn+] must be EE 1 (mod p) and the nth term of both the sequences [Hn } and [H'n) 
will be EE 1 (mod/7). 

Note that the product of the/? terms of the two Fibonacci groups modulop, pf 5, is 

((1 + ^5)/2)n-((1-^5)/2)n ^-1n (mod/7). 

Let us now assume either Hn = 1 or H'n EE 7 (mod/7) but that Fn£0 (mod/7). Then Hn =±1 (mod/7) if Hn = 1 
(mod/?), or Hn EE±7 (mod/7) if H'n = 1 (mod/7). 

Let us assume that both Hn and Hn are EE 1 (mod/7). Then 

Hn EE ((-1+sj5)/2)Fn + Fn+1 EE 7 (mod/7), 
and 

H'n = ((-1-y/5)/2)Fn + Fn+1 = 1 (mod/7). 
Thus, 

Hn-Hn EE 5Fn EE 0 (mod/7). 

Since Fn^O by assumption, 5 = 0 (mod/7) and/7 must equal 5. If/7 = 5, then 

(1 + ^5}/2 = (1- sj5)/2 = Mt = 3 (mod 5), 

and there is only one Fibonacci group. This group is {1, 3, 4, 2} and has a period of 4. 
Now, suppose p i 5 and Fn ^0 (mod p). Then, either, 

(1) Hn EE ((~1+^5)/2)Fn + Fn+1 ^ 7 (mod/7) 

//;, = ((-1-y/5)/2)Fn-f-Fn+1=-1 {mod p) 
or 
(2) / / „ EE ((-1+^5)/2)Fn + Fn+J EE-7(mod/7) 

//;, EE ((-1-j5)/2)Fn + Fn+1 = 7 (mod/7). 
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In both (1) and (2), by adding Hn and H'n we see that/7,, = 2Fn+i (mod p). In (1), by subtracting Hn from 
Hn, we obtain Fn = 2/sJ~5 and thus Fn+1 = 7/^/5 (mod p). In (2), we observe that Fn =-2/«J~5 and Fn+j = 
- / A / 5 (mod/?). 

Now, if Fn =2Fn+i, then 
^ - / = Fn+1- Fn = -Fn + 1 (mod/?). 

Note that 
F2n = FnFn-i + FnFn+1 = Fn(Fn-7 + Fn+j). 

Thus, if Fn =2Fn+1/ Fn^O (mod/7), then Fn.f + Fn+1 =0and F2n = 0(mod/?). 
It is known that the only possibilities for fi(7, /, p) are 1, 2, or 4. If |3/7, 7,p) = 4, then a/7, /, /?> is an odd 

number. (See [2].) But, then F2n =0, Fn^O (modp) can have no solutions since the zeros of Fn (mod/7) can 
only occur at multiples of a(7, 7, p). Thus, Fn =2Fn+1 (mod/?) is not solvable if |3/7, /, /?J = 4. Thus, if 
]3/7, 7, p) = 4, all solutions of Hn = 7 or Hn = 7 (mod/?) must be generated by Fn =Q, Fn+i = 7 (mod/?), as 
we have seen before. Thus, the order of the two Fibonacci groups modulo/7 must both be oj(7f 7, p) if/? ^ 5. 

If j3f 7, 7, p) = 2, then a(7, 7, p) = 0 (mod 4) [2] . But the first solution for Hn or H'n = 7 generated by an 
Fn ^0 (mod/?) can only be n = 1/2a(7, 7,p), if such a solution exists. This is true since /? must equal 1/2k>a/7,7,pi 
for some odd integer Ar. But both Hfji(i,i,p) and H^^^p) are = 7 (mod/?). Thus,/? divides 

li(7, 7fp) = 2a(7, 7,p). 
Hence, k= 7 and n = 1/2a(7,7,pl But since a(7, 7, p) = 0 (mod 4), n= 1/2a(7, 7,p) = Q (mod 2); and.the prod-
uct of / / „ and Hn =-7n = 7 (mod /?), not - 1 , a contradiction. Thus, if (3(7, 7,p) = 2, the order of both Fib-
onacci groups must be \i(7, 7, p). 

The last case occurs if $(7, 7,p)= 7. Then a(7, 7,p) = 2 (mod 4) [2] . Hence, n = 1/2a(7, 7,p) = \ (mod 2) is 
the first place where either Hn or Hn can be = 1 and Fn ^ 0 (mod /?). Then the product of Hn and 

Hn SEE - 7 " = - 1 (mod/?). 
Now, look at the two congruences: 

F2n = Fa(i,i,p) = FnFn-i + FnFn+i'= 0 (mod/?) 
and 

F2n+1 = Fa(i,i,p)+1 = F^+F2
n+1 = 7 (mod /?). 

Solving for Fn and />,* 7, we see that 
Fn = £?A/5 and /77+r - #/>, = ±1/\/5 (mod/?), 

in agreement with earlier results. Thus, if |3f 7,7,p) - 7, the period of one Fibonacci group is 1/2<i(7,7,p) and the 
period of the other is a(7,7,p). 

We have now proved our first lemma. 

Lemma 1. If (5/p) = 0 or 7, p an odd prime, then the periods of the two Fibonacci groups [Hn) and 
{Hn} modulo/? are both \i(7,7,p) \\$(7,7,p) = 2 or 4 and p f 5. If/? = 5, the period of the unique Fibonacci 
group is 4. If j3/7,7fp) = 7, the period of one Fibonacci group modulo p is a(7,7,p) = \x(7,7,p)f while the period 
of the other group is 1/2\±(7,7fp). 

To generalize this result to other Fibonacci-like groups, it would be helpful if the product of the nf terms of 
these sequences, {Mn} and {M'n}, were = -1n (mod /?) as before. The product of the nt terms of the two 
Fibonacci-like groups is: 

((a + ̂ +Tb)/2)n• ((a - ^T~4~b)/2)n EE (-b)n (mod/?). 

This product will be =-1n if b = 7. From now on, in discussing Fibonacci-like groups [Mn] and [M'n] modulo 
/?, b will equal 1 and (a2 +4/p) will equal 0 or 1. 

If Kg = c, K1 = d are the first terms of a G. F. L.S., then this sequence can be generated from the correspond-
ing P.F.L.S. by the formula: Kn = (d - ac)Jn + cJn+i- Hence, if b = 7, 

Mn = ((a + -jl>2~T4}/2)n = ((-a+.jli2~^~4)/2)Jn+Jn+l (mod/?) 
and 
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M'n E= ((a-sja2 +4)/2)n = ((-a-s/a2 +4)/2)Jn+Jn+1 (mod/?). 

We wili next need a few formulas for P.F.L.S. [Jnj with a and b unspecified. These formulas are simply gen-
eralizations of some familiar Fibonacci identities: 

(a) Jn-lJn + l-Jn= h1)nbn'1 

(b) J2n = bJnJn-i+JnJn+i 

(c) J2n+1 = bJn +Jn+1 • 

These formulas can easily be proven by induction. If b = 7, we obtain exactly the same formulas as for the 
Fibonacci sequence. 

The method for finding the periods of Fibonacci-like groups with b = 7 is along the same lines as before. 
$(a, l,p) must be either 1, 2, or 4. To prove this let n = a(a,l,p). Then Jn.1Jn+1 - J„ = - l n (mod /?).But 
Jn = 0 (mod /?) and 

1-Jn-1 = Jn+i - aJn = Jn+i (mod/?). 

Thus, J%+1 =-1n (mod p). If n is o6d,J^+1 =-1n (mod p)',J^+1 = / and $6?, 1,p) = 4. (This also shows that 
no term J2n+1 of a P.F.L.S. with b = /can be divisible by a prime p = - / (mod 4) since (-1/p) = -1.)\\ 
Jn+1 = I then ^ ± 7 . lfjn+1 = 1,$(a,1,p) = 1. \ijn+1=-1 (mod/?), (S(a, 1,p) = 2. 

Let us now look at the terms of {Mn} and {/Wn} which are = 1 (mod/?). As before \ijn=0 (mod/?), then 
Jn+1 must be = 1 (mod/?) and bothM„ mdMn = 7 (mod/7). 

\iJn^O (mod/?) and bothM^ and M'n are = 1 (mod/?), then we have: /Va2 +4)Jn =0 (mod/?) and a2 * 4 = 
0 (mod/?). But then there is only one Fibonacci-like group [Mn) and Mn = (a/2)n (mod/?). Buta2+ 4 = 
0 (mod /?). Thus;a2// = (a/2)2 = - / (mod/7). Thus, a/? belongs to the exponent4 modulo/? if (a2 +4/p) = 0, 
and the period of such a Fibonacci-like group (mod/?) is 4. 

Hence, if eitherMn orMn = 7, •/„ ^ t f anda2 ^ 4 ^ 0 (mod/?), then one otMrifMnm 1 and the other is = - 1 
(mod/?). Solving for Jn a n d ^ 7 , we see that./,,*/ = 1/2aJn and that 

7„ = ±2/^]a~2~~+~4, Jn+1 = ^ a ^ = ta/ja^+i . 
Also, 

1 'Jn-1 =Jn+l — aJn = 1/2aJn — aJn = —1/2aJn = —Jp+1 (mod /7). 
Thus, as before, if a2 + 4^0 (mod/?), the first/7 > #such that / I^ orM'n = 1 (mod/?) is generated by aJn £ 

0 (mod /?), is /7 = %a(a,1,p), if it exists. If 0/a, 1,p) = 4, then no such instance can occur since afe 7,/?̂  is odd. If 
(3(a,1,p) = 4, then id(a,1,p) =4 (mod 8), since a(a, 1,p)= 1 (mod 2). 

If (3fa, 1,p) = 2, then one can solve for Jn an6Jn+j by the congruences: J2n = 0 (motip),J2n + i = ~1 (m°d 
p). Substituting back, one finds that the product of Mn and Mn is = 1 (mod/?) in contradiction to what we 
have determined before. This also shows that 1/2d(a, 1,p) = 0 (mod 2), a(a, l,p) = 0 (mod 4), and \x(a, l,p) = 0 
(mod 8). 

If $(a, 1,p) = 7, we solve for Jn andJn+j by the formulas: T ^ = 0 (mod/?), J2n+1 = 1 (mod/?). Solving, we 
find that 

Jn = ±2/^Ja2 +4, Jn+1 = ftaJn = ±a/sja2 +4 (mod/?), 

in accordance with our previous results. Note that this further shows that if fi(a,1,p)= 7, then (a2 +4/p)= 7. 
Also, if we substitute back to determine Mn and M'n, we determine that their product = —1 (mod/?). This 
shows that 1/2a(af 1,p) = 1 (mod 2) and a(a, 1,p) = 2 (mod 4) if j3fo 1,p) = I 

Thus, we have now proved our second lemma. 
Lemma 2. The periods of the Fibonacci-like groups {Mn} and [Mn] modulo p are both \±(a,1,p) if 

$(a, 1,p)= 2 or 4 and (a2 +4/p) = 7. If (a2 +4/p) = 0, then the period of the single Fibonacci-like group is.4. If 
(a2 + 4/pf = 7 and fi(a, 1,p) = 1, then the period of one Fibonacci-like group is 'Apt(a, 1,p) while the period of 
the other group is p(a, 1,pl 

The remainder of this paper will be devoted to finding for a given odd primep all the P.F.L.S. with 0 <a <p, 
b = 7, and (a2 +4/p) = 0 or 1, and studying the Fibonacci-like groups that they generate.. 
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To find all 0 <a <p such that (a2 +4/p) = 0 or 7, all one needs to do is find all solutions of the congruence: 

x2 - a2 = (x + a)(x - a) = 4 (mod/?). 

There are p — / sets of solutions fo r * and a, generated by 

(x+a) = -k, (x-a)=4/k (mod/?), 1' < k < p - 7. 
In general, 4 sets of solutions lead to the same x2 and a2: 

(x + a) = k, (x - a) = 4/k; (x + a) = 4/k, (x - a) = k; 

(x+a) = -k, (x-a) = -4/k; (x+a) s -4/k, (x - a) = -k (mod p). 

Since k^Ofk^-k and 4/k £ -4/k (mod/?). However, 4/k = k iff k = ±2 (mod /?). Also, -4/k = * iff * =±^J-4 
(mod /?). Combining these facts with the fact that/?, an odd prime, = 1 (mod 4) iff both ±4 are quadratic resi-
dues modulo /?, one finds that the number of solutions ofx2 = a2 +4 (mod/?) is n + 7, if/? = either4/7 + 7 or 
4n + 3. 

I next claim that the set of numbers of the form ((a±yja2 + 4)/2), where 0 < a </? and (a2 + 4/p) = 0 or /, 
gives rise to all the non-zero residues of /?. In general, (a ± *Ja2 + 4)/2 gives rise to two distinct residues, a and 
—a, except in the case where a = 0 (mod/?). Combining all these conditions with the fact that a2 +4 = 0 (mod/?) 
is solvable only if/? = 1 (mod 4), we see that all the non-zero residues are obtained if the congruences: 

(ax ± >Ja\T4)/2 = (a, ± ^f+~4)/2 

imply t h a t ^ =a2 (mod/?). 
In each of the different cases, if we put the square roots on the same side of the congruence, square both sides 

and collect terms, we obtain the congruence: 

4a\ - 8ala2 +4a\ = 4(ax - a2)
2 = 0 (mod/?). 

Thus, ax =a2 (mod/?). 
Combining our previous results, we are now ready to state our main theorem. The P.F.L.S. with recursion re-

lation: Jn+i = aJn + bJn-f will be denoted by {Ja,b}-

Theorem 1. If/? is an odd prime equal to either 4n + 1 or4n +3, then there are 2n + 1 P.F.L.S. {Ja,i} 
with 0 < a < p - 1 and b = 1, such that (a2 + 4/p) = 0 or 7. These generate/? - 7 Fibonacci-like groups, the 
first terms of which are equal to each of the/? - 7 non-zero residues modulo/?. 

The exponent e to which a non-zero residue r belongs modulo p is equal to the period of the Fibonacci-like 
group of which it is the first term. 

(1) If e = 1 (mod 2), thene = V2\i(a/l,p) for some P.F.L.S. {J a f 1 ) with a <p dx\&fi(a,1,p)= 7. 
(2) If e = 2 (mod 4), then e = /ife, 7,/?,/for some P.F.L.S. {Ja,i} witha</? andp(a,1,p)= I 
(3) We/4, e = 4 (mod 8), then e = \±(a, l,p) for some P.F.L.S. {Ja,l} with a <p ar\df5(a,1,p) = 4. 
(4) If 0 = 0 (mod 8), then e = id(a, 7,/?̂  for some P.F.L.S. {Ja,i} witha</? and $(a, 1,p) = 2. 
(5) If e = 4, then there exist 0(4) = 2 P.F.L.S. {j3/i} with a < p, a(a,1,p) = p, and $(a,1,p) = 4. Each 

P.F.L.S. generates a Fibonacci-like group with a period of 4. 
This theorem leads to a number of interesting corollaries. Unless stated otherwise, /? is an odd prime, b = 1, 

and (a2 +4/p) = 0 or 7. 
Corollary 1. If 0 < a <p - 7, and b= 1, then the period of any P.F.L.S., {Jaj}, divides/? - 7, is even, 

and is not equal to 4. If d divides/? - 7 and d = 2 (mod 4), then the number of P.F.L.S. {Ja,i}, 3 </?, with 
y.(a,1,pj = d is (p(d). If d / 4 and^/ = 0 (mod 4), then the number of P.F.L.S. {Ja,i}, a<pr with \x(a, 1,p) = d 
\%1/2(t)(d). 

Proof. This follows from Theorem 1 and the fact that the number of residues belonging to a particular ex-
ponents modulo/?, wheree dividesp - 1, \s(p(e). 

The next corollary is very important. It states that for any odd prime,/?, there exist an infinite number of 
P.F.L.S. with the maximum possible period modulo/?. 

Corollary 2. If 0 < a < /?, p / 5, then the number of P.F.L.S. {Ja,i} with a maximal period of/? - 7 is 
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1/2(p(p - 1)\\ p - 7 = 0 (mod 4). If p - 1-1 (mod 4), then the number of P.F.L.S. {jaf1} with a maxi-
mal period modulo p of p - 7 is <j>(p ~ 1). If p = 5, then the P.F.L.S. {jjj} = [Fn] and {J4fi\each have 
periods of 20. (These periods are maximal since T/2 +4/5) = (42 +4/5) = 0 and (}(1,1,5) = (3(4,1,5) = 4.) If a 
now ranges over the non-negative integers, then there are an infinite number of P.F.L.S. {Ja/j} with a maximal 
period modulo/?. 

Proof. If (a2 + 4/p) = 1, then one can generate a Fibonacci-like group whose period is at most/? - 7 and 
which equals \x(a,1,p). Thus, \i(a,1,p) is at most/? - 7. If a=d (mod/?), then the P.F.L.S. {Ja/j} and { 7 ^ 7} 
have the same period modulo/?. The rest follows from Corollary 1. 

If (a2 + 4/p) = -1, then Corollary 2 does not apply, but we can still find isolated cases of P.F.L.S. {Ja,i} 
with maximal periods. If (a2 + 4) = ~1 and fi(a, 1,p) = 2 or 4, then \i(a, 1,p) can be at most 2(p + 1). Examples 
are: (5/7) = - 1 , 0(1,1,7) =2 and JU(1,1,7) = 16; and (5/13) = - 1 , 0(1,1,13) = 4, JU(1,1,13) = 28. Note that if 
$(a,1,p) = 1, then (a2 +4/p) must = 1 as we have shown earlier, and the maximal period modulo/? is/? - 7, 

Corollary 3. If 0 <a </? and/? = 3 (mod 4), then every P.F.L.S. {Jaj} has (3(a,1,p) = I 

Proof. This follows from the fact that/? - 7 =2 (mod 4). 

Corollary 4. If 7 < a </?, then no P.F.L.S. { ^ 7 } has (l(a,1,p) = 7 iff/? is a Fermat prime = 22 + 1.lf 
a = 0 (mod p), then one gets the trivial P.F.L.S. (0,1,0,1, — ) with fi(a,1,p)= 1. This gives rise to the 2 trivial 
Fibonacci-like groups, {]n} and { - 1 / 7 } . 

Corollary 5. If 0 < a < p and/?- 1"=2kY\pj/ p/=] (mod 2), then the number of P.F.L.S. {Ja,i} with 
$(a,1,p)= 7 is ' 

The number of P.F.L.S. {ja/1} with ($(a, 1,p) = 2 is 

c/jp-r 
d=0 (mod 8) 

The number of P.F.LS. {j3f1} with fi(a, 1,p) = 4\s 

1/2 £ <t>(d) . 
d\p-1 

d^4 (mod 8) 

Corollary 6. If 0 < a < /? and e is an even number dividing/? - 7, then the summation of all the a's of 
P.F.L.S. {Jai} with \i(a, 1,p) = e is = 0 (mod /?). In addition, the summation of all the a's of P.F.L.S. {ja,i} 
with \x(a,1,p) dividinge is = 0 (mod/?). 

Proof One can prove this by using the fact that if r belongs to the exponents modulo/?, then so does 
1/r. Combine this with the fact that if r = (a ±sja2 +4)/2 (mod/?), then 1/r = (-a ±^J(-a)2 + 4)/2 (mod/?), 
and we obtain the result. 

One of my purposes in writing this paper was to see if I could get any general results on the relation between 
residues and the primes of which they were primitive roots. Unfortunately, I was unable to obtain any new re-
sults. But I will close this paper with an indication of how one might use P.F.L.S. and Fibonacci-like groups to 
obtain results about primitive roots. I will prove, using my method, the well-known result that if 5- and ^ -̂  7 
are primes, s = 3 (mod 4), then all quadratic non-residues are primitive roots modulo 2s + 1, excluding — 1 . 

I will use a result of Robert Backstrom [1], to prove this. He stated that if s is a prime and/? = 2s+ 7 is prime 
such that(-b/p) = -1 and (a2 +4b/p) = +1, then a(a,b,p) = p - 1A\b= 1, then/? = 3 (mod 4), %\x\z%(-b/p) = 
- I Hence,/?- 7 = 2 (mod 4). Thus, every P.F.LS. {Ja,i}, 0 < a < p, (a2 + 4/p)= 1, has(3(a,1,p)=* 1 by 
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Corollary 3. The only periods that a P . F . L S . { ^ ; } can have is 2 or/? - 7, the only even numbers dividing 
p - 7. It is easily seen tha t^ / /? - 3) of these P.F.L.S. have a period o f / 7 - 7, each giving rise to one Fibonacci-
like group with a period of 1Mp - 1) and one with a period o f / ? - 7. Those with periods of 1Mp - 1) correspond 
to the quadratic residues of p excluding 1, and the others correspond to the quadratic non-residues, excluding 
- 1 . 
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SOLUTION OF A CERTAIN RECURRENCE RELATION 

DOUGLAS A. FULTS 
Student, Saratoga High School, Saratoga, California 

At the recent research conference of the Fibonacci Association, Marjorie Bicknell-Johnson gave the recurrence 
relation 

(1) Prf1-2Pr-Pr-f+Pr-2 = 0, r = 3,4,-, 

that represents the number of paths for/- reflections in three glass plates (with initial valuesPj = 7, ?2 = 3 and 
P3 = 6). I submit here an explicit expression forPr / and also obtain its generating function. 

Based on the usual theory for such relationships, the general solution of (1) can be given in the form 

(2) Pr= C1R
r
1+C2Rr

2 + C3R
,
3f 

where the quantities R?, /?2 and R3 are the roots of the equation 

(3) R3-2R2- R+1 = 0, 

and the constants C-j, C2 and C3 must be determined to fit the specified conditions. 
This cubic, whose discriminant is equal to 49, has three real roots, and they can best be expressed in trigono-

metric form, as texts on theory of equations seem to say. The roots of (3) are 
r 

(4) 

where 

Rl = 3 [1 + ^ c o s < ^ 
R2 = I [2 - sfi cos 0 + V ^ T sin 07 

R3 = 1- [2 - V7 cos 0 - V27" sin 07 

(5) 0 = |- arc cos ( — L _ 

Such roots can be represented exactly only if they are left in this form. (Approximations of them are 

Rf = 2.2469796, R2 = 0.5549581, and R3 = -0.8019377.) 

The constants in the solution (2) are then found by solving the linear system 

[Continued on page 45.] 


