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H-274 Proposed by George Berzsenyi, Lamar University, Beaumont, Texas. 

It has been shown (77?*? Fibonacci Quarterly, Vol. 2, No. 2 (April, 1964), pp. 261-266) that if 
0 0 A I Fl_t Fn„lFn ' Fl \ 

Q =\0 1 2 \, then Qn = [2Fn.1Fn Fn+1 - Fn.tFn 2FnFn+1 . 
\1 * *j \Fn fnFn+l F2+1J 

Generalize the matrix Q to solutions of the difference equation 

Un = rUn-i +sUn„2 , 
where r and s are arbitrary real numbers, UQ = 0 and U\ = 1. 

H-275 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Let Pn denote the Pell Sequence defined as follows: Pi = 1, P2 = 2, Pn+2 = 2pn+i +Pn(n> V. Consider the 
array below. 

1 2 5 12 29 70 •• (PJ 
1 3 7 17 41 

2 4 10 24 ... 
2 6 14 •.. 

4 8 ». 
4 ... 

Each row is obtained by taking differences in the row above. 
Let Dn denote the left diagonal sequence in this array; i.e., 

Dt = D2= h D3 = D4 = 2, D5 = D6 = 4, D7 = D8 = 8, 

(i) Show D2n-i = D2n = 2n'1 (n > 1). 
(ii) Show that if F(x) represents the generating function for {Pn}n=i and D(x) represents the generating 

function for {Dn}n=i , then 

D(X) = ~y~-F[-^-\ . 
1+x \ 1 + x I 

SOLUTIONS 

DOUBLE YOUR FUN 
H-255 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 
281 
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2fYl 2vi 

E V (- lV+k I 2m \l 2n \ I 2m + 2n\ I 2m + 2n \ = (- 1)m+n (3m + 3n)-' (2m)- (2n^! 

• n i n w A k \ i + k \2m-j + k m!n!(m+n)!(2m+n)!(m+2n)! 
j=0 k=0 

Solution by the Proposer. 

We shall use the following Saalschutzian theorem for double series: 
( 1 1 ) V * V * *m'r(~nh(a'r+s\b)r\C)s _ ,jirn+n fC ~ #/m-/-n\C — a — b )m\C — a — b)n 

t^O s-0 r!s! (c)r+s(d)r(d% Mm+n (c - a - b)m (c- a - b% 

where 
a+ 1 = d + o", c + d = a + b- m + 7, c + d' = a + b'- n + 7. 

(For proof of (\)sw Journal London Math. Soc, 38 (1968), pp. 415-418.) 
In (1) replace/?, b'by b + m, b'+ n, respectively; also replace/77,/7 byj,k. Then (1) becomes 

V V (-JM-UsMr+sfb +i)r(b'+k)s = (c- a)j+k(-d'-k+ Djf-d-j + 74 
hbio r!s!(c)r+s(d)r(d% ~ (c)j+k(d)j(d% 

where now 
(2) a+1=d + d/

/ c = b + d,= b, + d. 
Then 

y {bh^\ (c ~a,j+k(~d'-k + 1>i(~d ~ i+ 7)k j k 
j£0 /.'*•' Tchi~+k(d)j(d% x y 

-y£b i!k! hh ~r!s!(c)r-(dyd% 

V* unr±s (a)r+s<bhr(h')2s rs ^ (b + 2r)j(b + 2s}k j k 
= rh rls!(cK-(dK(d%Xy £ o -i,kl 

*-*n r!s!(cir+s(d)r(d')s 
r,s=0 ' s i 

where a, b, b\ c, d, tf'satisfy (2). 
N ow take b = -2m; c = -2n. Then 

d = c + 2nf d' = c + 2m, a+ 1 = 2c + 2m + 2n. 

The above identity becomes 
2m 2n 

(3) y y (- Vj+k (2m\( 2n ) f'° ~2m~2n + 1h+k(~c -2m-k+ Djf-c - 2n -j + 7)k ; k 
j k i o ^ J !\h ) (c)j+k(c+2n)j(c+2m)k 

= E i (~Dr+s ^ ^ j ^ , 
n n r!s!(c)r+Jc+2n)r(c + 2m)c =0 s=0 

We now takex = y = 1, c = p + 1, wherep is a non-negative integer. Then (3) reduces to 
2YYI 2YI 

iA\ Y~ ' V (- 7lJ+k (2m\ 12n\ ( 2m + 2n + 2p \( 2m + 2n + 2p 
w L* L, f u \ ] \ k ) \ j + k+p \2m+p-j + k 

j=0 k=0 K ' ' ' 
= (-i)m+™ (2m)! (2n)! (3m + 3n + 2p)l (2m +2n+ 2p)! 

ml n!(m+n+p)! (2m +2n + p)! (2m + n + p)f (m + 2n + p)l 
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For/7 = 0, (4) gives the stated result. 

STAGGERING SUM 

H-257 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Consider the array, D, indicated below in which F2n+i (n = 0, 1,2, —) is written in staggered columns. 

I 
2 1 
5 2 1 

D •' 13 5 2 1 
34 13 5 2 1 
89 34 13 5 2 1 

(i) Show that the row sums are F2n+2 (n = 0, 1, 2, •••). 
(ii) Show that the rising diagonal sums are Fn+1 Fyl+2 (n = 0, 1, 2, ••• / 
(iii) Show that if the columns are multiplied by 1, 2, 3, ••• sequentially to the right, then the row sums are 

F2n+3~ Un = 0, 1,2,-). 

Solution by George Brezsenyi, Lamar University, Beaumont, Texas. 

(i) The sum of the entries of the nth row is easily seen to be 
n 

X) F2k+1 , 
k=0 

which is well known to be F2n+2 . 
(ii) The sums seemingly depend upon the parity of n. If n is odd, say n = 2m + 1, then the rising diagonal 

sum is m 

2T F4k+3 > 
k=0 

which may be shown to equal /r2m+2 ^2m+3^ o r Fn+iFn+2> by mathematical induction. Similarly, if n is 
even, say n = 2m, then the desired sum 

m 

2 F4k+1 
k=0 

yields upon evaluation F2m+t F2m.+2> which is also equal to Fn+iFn+2 • 
(iii) To resolve this part of the problem we show that 

n 

£ (n+1- k)F2k+i = F2n+3 ~ 1 • 
k=0 

In n = 0, the result is trivial. Assume it for/7 = m. Then for A7 = m + /we have 

m+l m 
Y ((m+1)+1-k)F2k+i = E (^+2~k)F2h+1 + F2m+3 

k=0 k=0 

m m 
= H (m+l- k)F2k+l + J^ F2k+1 + F2m+3 

k=0 k=0 

= F2m+3 ~ 1 + F2m+2 + F2m+3 = F2(m+l)+3 ~ 1-

Thus the result holds for/7 = m + 1. This completes the induction. 

Also solved by W. Brady, A. Shannon, G. Lord, P. B ruck man, F. Higgins and the Proposer. 
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THE SIGMA STRAIN 

H-258 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Sum the series 

s = j2xaybzCfd> 
where the summation is over all non-negative a, b, cf d, such that 

2a < b + c+d 
2b < a + c + d 
2c < a + b + d 

Jd < a + b + c 

Solution by the Proposer. 

Let 
' a' = -2a + b + c + d 

b' = a- 2b + c + d 
c' = a + b- 2c+d 
d' = a + b + c- 2d. 

3a = b' + c'+d' 
3b = a' + c' + d' 
3c = a' + b'+d' 
3d=a'+b' + c' . 

Then a', b', c', d'are non-negative and 

Thus 

This implies 

and conversely. 
Hence 

b' + c' + d' = 0 
a' + c' + d' = 0 
a' + b'+d' = 0 
a'+b'+c' = 0 

(mod 3). 

where 

a',b',c',d'=o 
a>==b>==c>==d'=i (mod 3) 

a' = b' = c' = d' (mod 3) 

S = SQ + $i+ S2, 

^(b'+c'+d') 3 (a'+c'+d') \(a'+b'+d') \(a\b\c') 
a = o,1,21 

Put a' = 3a + i, etc. Then 

Si = (xyzt)1 53 x ~Y 
asbfc.d=0 

so that 

b+c+d.,a+c+d a+b+d .a+b+c (xyzt)1 

(1 - yzt)(l - xzt)(1 - xyt)(1 - xyz) 
0 = 0,1,2). 

1 + xyzt + (xyzt) z 

(1 - yzt)(1 - xzt)(1 - xyt)(1 - xyz) ' 

POSITIVELY! 

H-259 Proposed by R. Finkelstein, Tempe, Arizona. 

Let/? be an odd prime and AW an odd integer such that/77 ^ 0 (mod/7). Let Fmp = Fp'Q. Can (Fp, Q) > 1? 
[Continued on page 288.] 


