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The purpose of this note is to present a natural manner of extension of the Fibonacci numbers into the com-
plex plane. The extension is analogous to the analytic continuation of solutions of differential equations. 
Although, in general, it does not guarantee permanence of form, in case of the Fibonacci numbers even that 
requirement is satisfied. The resulting complex Fibonacci numbers are, in fact, Gaussian integers. The applica-
bility of this generalization will be demonstrated by the derivation of two interesting identities for the classical 
Fibonacci numbers. 

The notion of monodiffricity was introduced by Rufus P. Isaacs [1 , 2] in 1941; for references to the more 
recent literature the reader is directed to two papers by the present author [3 ,4 ] . The domain of definition of 
monodiffric functions is the set of Gaussian integers; a complex-valued function / is said to be monodiffric at 
z = x + y/\i 
(1) 4 [f(z + i)-f(z)] = f(z+1)-f(z). 

i 

As Isaacs already observed, if / is defined on the set of integers, then the requirement of monodiffricity deter-
mines /uniquely at the Gaussian integers of the upper half-plane. We term this extension monodiffric continua-
tion. Kurowsky [5] showed that the functional values of /may be calculated by use of the formula 

(2) f(x + yi) = £ ( * ) / * A f c f l W , 
k=o ' 

where the operator A is defined by the relations 

A°f(x) = f(x), A*f{x) = f(x + 1)- fix) and Akffx) = Ak'1{A1Hx)) for k > 2. 

When applied to the Fibonacci numbers Ak behaves especially nicely; one may easily prove that 

&kFn = Fn_k . 
Therefore, via Eq. (2), one may define the Gaussian Fibonacci numbers, Fn+mi, for/? an integer, m a non-
negative integer by 

m I \ 
(3) Fn+mi = 22 [ k )' ^n~k ' 

k=0 
The first few values of Fn+mi a r e tabulated below: 
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On the basis of Eq. (3) it is easily shown that 

'4/ 'n+mi = '(n-l)+mi + ' (n-2)+mi > 

that is, for each fixed m, the sequences {Re(Fn+mi)} and {lm(Fn+mi)} are generalized Fibonacci sequences 
in the sense of Horadam [6 ] . 

Our first aim will be to utilize Eq. (4) in order to find a closed form for the Gaussian Fibonacci numbers. The 
development hinges upon the observation (easily proven by induction via Eq. (1)) that for each m = 0, 1,2,• -, 

'm+2mi ~ u/ 
and, consequently, with the help of Eq. (4), one can prove that 

v * 3 ' 'n+2mi ~ 'm+l+2mi'n-m 
for each n = 0, ±1,±2, -,m = 0, 1,2, - . 

Although one could show directly that 

(6) Fm+1+2mi = (1 + 2i)m, 
we shall provide a more insightful derivation. It is well known that if 

a -[11], then fl* = [g+* g j 
for each k = 0, ±1, ±2, •••. Since a matrix must satisfy its characteristic equation, one may then write 

a2 = Q + I. 
With the help of this one finds that 

(Q + il)2 = Q2 + 2iQ-I = (1+2i)Q, 
or, more generally, for #7 =0,1,2,-

(Q + iI)2m = (1+2i)mQm. 
Expansion of the left member of this identity and multiplication by Qn~2m yields 

2 m 
Y(2™)ikQn-k = (1+2i)mQr 

k=0 

Finally, equating the first row second column entries of the two members of this matrix identity gives 
2m 

(7) E[2?)ikFn-k = (1*2irFn_m. 

Since, in view of Eq. (3), the left members of Eqs. (5) and (7) are identical, Eq. (6) is proven. 
The evaluation of the right member of Eq. (3) for odd m is easily accomplished now with the help of Eq. (1). 

The results may be summarized as follows: 

(8a) Fn+2mi = (1 + 2i)mFn.m 

(8b) Fn+(2m+i)i = (1 + 2i)m[Fn_m+iFn_1_m] . 
It may be observed that for fixed odd positive integers, m, the sequences {Fn+mi\ are closely related to the 
generalized complex Fibonacci sequences studied by Horadam [7] and possess similar properties. One may also 
observe that Eq. (6) is a special case of Eq. (8a), arising when n = m + 1. 

The identities, 
m 

(9a) 2 \2k)(~1) Fn'2k = amFn-m 
k-0 

m , 
Ob) Z[%:i)(-'>kFn-2k = b. m+1 'n-m > 

k=o * -•" " * ' 
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promised earlier in the paper, are obtained by equating the real and the imaginary parts of Eq. (7). The num-
bers d£ and by,, defined by 

(1 + 2i)k = ak+bki, 

may also be obtained with the help of the following algorithm (which is more in the spirit of the present publi-
cation): ag = 1, bo = 0 and for k> 1, 

ak = ak-l - 2bk-i and bk = bk-i +2ak-i • 

The table below lists the first few values of a^ and by, obtained in this manner: 

I n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

an 

1 
-3 
-11 
-7 
41 
117 
29 

-527 
-1,199 

237 

b n j 
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-24,478 

1,721,764 
3,565,918 

-1,476,984 

Figure 2 
To illustrate the results, we list below the evaluation of Eqs. (9a) and (9b) form = 5: 

Fn-45Fn_2 + 210Fn_4-210Fn_6+45Fn_8-Fn.l0 = 41Fn_5, 

12Fn - 220Fn_2 + 792Fn_4 - 792Fn_6 + 220Fn,8 - 12Fn_l0 = 44Fn_5, 

which, upon simplification, may be combined into the following elegant relationship: 

(11) Fn- 5Fn+2 —9Fn+5 + 5Fn+8 - Fn+10 = O. 

Other simple identities arising as special cases include: 

(12) Fn-3Fn+2 + Fn+4 = O, 

(13) Fn+4Fn+3- Fn+6 = O, 
and 
(14) Fn- 12Fn+2+29Fn+4 - 12Fn+6 + Fn+8 = O. 

In conclusion we note that the entire development can be extended to the study of generalized Fibonacci 
numbers. In fact, if the sequence Hn is defined by 

H0 = P, Hl = Q> Hn = Hn-i +Hn_2 for n > 2, 

wherep and q are arbitrary integers, then Eqs. (9a) and (9b) will readily generalize to 

(15a) 

and 

(15b) 

k=0 

I 2m 
\2k (-1) Hn_2k ~ amHn~ 

^ \2k + l) (~~^ Hn_2k ~ bm+1 Hn-

respectively. 
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CONSTANTLY MEAN 

PAULS.BRUCKMAN 
Concord, California 94521 

The golden mean is quite absurd; 
It's not your ordinary surd. 
If you invert it (this is fun!), 
You'll get itself, reduced by one; 
But if increased by unity, 
This yields its square, take it from me. 

Alone among the numbers real, 
It represents the Greek ideal. 
Rectangles golden which are seen, 
Are shaped such that this golden mean, 
As ratio of the base and height, 
Gives greatest visual delight. 

Expressed as a continued fraction, 
It's one, one, one, •••, until distraction; 
In short, the simplest of such kind 
(Doesn't this really blow your mind?) 
And the convergents, if you watch, 
Display the series Fibonacc' 
In both their bottom and their top, 
That is, until you care to stop. 

Since it belongs to F-root-five 
Its value's tedious to derive. 
These properties are quite unique 
And make it something of a freak. 
Yes, one-point-six-one-eight-oh-three, 
You're too irrational for me. 


