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In this paper it is shown that, for any odd prime p, a sequence of integers can be found which is uniformly 
distributed (mod/7?) if and only if/77 is a power of p. 

Suppose m is an integer greater than 1, We say that an infinite sequence of integers { Tn} is uniformly distrib-
uted (mod/77) if f o r /= 0, 7, —, m - 7 

lim - A(n,j,m) = 1 , 

where A(n,j,m) denotes the number of terms among Th ••-, Tn which satisfy the congruence 

T{ = j (m od m) . 
The combined results of Kuipers and Shiue [1] and Niederreiter [2] establish the fact that the Fibonacci se-

quence lfn\ is uniformly distributed (mod m) if and only if m is a power of 5. In this paper we show that, for 
any odd prime /?, a sequence of integers can be defined by a linear recurrence of the second order which is uni-
formly distributed (mod/77) if and only \\m is a power of/?, 

We first prove 
Lemma. Suppose p is an odd prime and that k is a positive integer. Then p + 1 belongs to the exponent 

pk (modpk+1). 

Proof. We use induction. 
For the case k= 1, note that 

(p + Vp = pp + - + (p
2)p2+p2+ 7 ss 7 (mod/72). 

Now ifp + 1 belongs toe (mod/72), it follows thate)/?, hence e = p. 
Suppose now that/7 + 7 belongs to/7fe (mod/7fe+:0. Then 

(p+1)Pk = tpk+1 + l 
and k+j 

(P + i)p = (tP
k+1 + ip = (tP

k+1)p+-+{p2)itpk+l)2+tP
k+2 + i. 

T h u s k+i , _ 
(1) (p+1P s ; ( m o d / + 2 ) . 
So i fp + 1 belongs toe (modpk + 2) , then e]pk+1. But from (1) it follows that 

(p+1)e = 7 (mod/7fe+i); 

and by the inductive supposition,/? \e. Therefore,e =p ore=p . 
Now 

(2) tp+DpK AK)pk + -AK)p2+Pk+l + 1 (mod/7fe+2). 
We next show that 
(3) 

(p+1)pk =(p^lpK...+(p^JP
2+pl 

; divisible by/7 i+2 fory = 2, 3, —, k. It will be useful to recall 

(4) ' P> i 
A pk(pk-n-(P

k-i+i) 
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Let p(n), p(d), and p(q) denote, respectively, the highest power of/7 dividing the numerator, the denomina-
tor, and the quotient in (4). When j = 2, p(n) > k, p(d) = 0, so p(q) > k. When / = 3, p(n) > k, p(q) < 7, 
so p(q) > k - 7. In general, pin) > k, and by the customary formula 

P(d) = £ 
e=l L P"A /E j -

e=l P P~ 1 

Since/7 > 3, we see that 

and since 

it follows that 

Returning to (2), we see that 

is divisible by/7 . Hence 

P(d) < L
2 ; 

£ <i'2 (J k), 

p(q) > k-; + 2 (j = 2,3,-,k). 

(fy (J 2,.», k) 

(p + IP ^pk+1 + 7 £ 7 (mod/7fe+2), 
and it follows finally \\\a\e = p^+i, which completes the proof of the lemma. 

We turn now to our major result. 

Theorem. Let/7 be an odd prime and { Tn} be the sequence defined by 

Tn+i = (p+2)Tn-(p+1)Tn-l 

and the initial values T^ = 0, T2 = 7. Then {Tn} is uniformly distributed (mod m) if and only if m is a power 
of/7. 

Proof. We associate with {l' }the quadratic polynomial 

x2- (p + 2)x+p+ 7 

whose zeros overC are/7 + 7 and /. It can be shown [3] that Tn is expressible in terms of those zeros as 

Tn = j;{(p+rr1-j) . 
PART 1. In this part of the proof we show that \Tn) is uniformly distributed (mod/? ),k= 7, 2, 3, —.. 
As the first step we prove that (?"/, T2, ••-, T A forms a complete residue system (mod/?^). Accordingly, 

suppose that T{ = 7y (mod pk), or equivalently, 

^{(p+ir1-!) - ?-{(p+1)H- 1} (mod/7fe), 

where / </', j <pk. Then 
(p+ir1 = (p+Jji-1 (mod pk+1). 

Supposing i> j, we write 
(p+7)J~1(p+7)e - (p+VH (mo<lpk+1), 

where # < e </? - 7, and it follows that 
(p + 7f ^7 (mo6pk+1). 

But by the Lemma,/? + 7 belongs to the exponent/? (modpk+1), so thate = 0and / = /. 
In this section of Part 1, we prove that {Tn} (mod/?fe) has periodpk. Specifically, we prove that 

T k = Ti and T L = T2 

p +1 p +2 
(mod/7fe). It will follow that 

T( = T k (mod/?fe) 
t+p 
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for / = /, 2, 3, •••. Note first that the congruence 

T k = 1-\(p+1)P - l ] = Q (mod/?fe) 
p +1 p I J 

is equivalent to k 

(5) (p+1)P = / ( m o d / + i ) 

which follows from the Lemma. Note next that the congruence 

T k =1-\(p+1)p+l-l]=1 ( m o d / ) 
P. +2 p I J 

is equivalent to k 

(p+1)P +1 =p + 1 (mod/?fe+i) 
which reduces to (5). 

Combining the results of Part 1, we see that the complete residue system (mod/; ) occurs in the first and all 
successive blocks of/?fe terms of {Tn}, proving that {Tn} is uniformly distributed (mod/?^). 

PART 2. In this part of the proof we show that {Tn] is not uniformly distributed (mod m) if m is not a 
power of p. 

If {Tn} is uniformly distributed (mod m), then it is uniformly distributed (mod ?) for every prime divisor ^ 
of m: We show here that {Tn} is not uniformly distributed (mod ?) for any prime ? j= p. There are two cases to 
consider according to whether (p + 1, qj = 7 or q. 

If (p + 1,q)= h we can prove 
(6) 
and 
(7) 
Equation (6) is equivalent to 

or 
(8) 

V 

Tq = 0 (mod?) 

Tq+1 = 7 (mod?). 

= l{(p+ i)q-i_ / } s o (modflr) 

(p+ Ifi'1 = 7 (mod/??) 
which is equivalent to the pair of congruences 

(9) (p+ l)*'1 = 7 (mod/?) 
and 
(10) (p+D*-1 = 1 (mod?), 
Equation (9) is trivial, and (10) is proved by Fermat's theorem. Equation (7) is equivalent to 

1{(p+Dq- 1} - 7 (mod q) 
p 

or 
(p+ 1)q = p+ 1 (mod/7?) 

which reduces to (8). Now (6) and (7) evidently imply that the period of {ln} (mod ?) is a divisor of ? - 7, 
consequently at least one residue will not occur in the sequence. 

If on the other hand (p + 1, q) = q, then 
Tn+1 = (p + 2)Tn -(p+ 1)Tn_i = Tn (mod ?) ; 

thus { Tn) (mod ?) becomes {0, 1, 1, •••} which plainly is not uniformly distributed (mod ?). This completes 
the proof of the theorem. 

R. T. Bumby has found conditions for a sequence defined by a second-order linear recurrence to be uniform-
ly distributed to all powers of a prime p. 
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