GENERATING FUNCTIONS FOR POWERS OF CERTAIN SECOND-ORDER RECURRENCE SEQUENCES

Math. J., Vol. 32 (1965), pp. 437-446.

 A.G. Shannon and A.F. Horadam, "Generating Functions for Powers of Third-Order Recurrence Sequences," Duke Math. J., Vol. 38 (1971), pp. 791–794.

5. E. Lucas, *Theorie des Nombres*, Paris, 1891.

A SET OF GENERALIZED FIBONACCI SEQUENCES SUCH THAT EACH NATURAL NUMBER BELONGS TO EXACTLY ONE

KENNETH B. STOLARSKY

University of Illinois, Urbana, Illinois 61801

1. INTRODUCTION

We shall prove there is an infinite array

1	2	3	5	8	•	•	
4	6	10	16	26	•	•	
7	11	18	29	47	•	•	
9	15	24	39	63	•	•	
•	•	•	•	•	•	•	
•	•	•	•	•	• ,	•	

in which every natural number occurs exactly once, such that past the second column every number in a given row is the sum of the two previous numbers in that row.

2. PROOF

Let a be the largest root of $z^2 - z - 1 = 0$, so $a = (1 + \sqrt{5})/2$. For every positive integer x let $f(x) = [ax + \frac{1}{2}]$ where [u] denotes the greatest integer in u. We require two lemmas: the first asserts that f(x) is one-to-one, and the second asserts that the iterates of f(x) form a sequence with the Fibonacci property.

Lemma 1. If x and y are positive integers and x > y then f(x) > f(y).

Proof. Since a(x - y) > 1 we have $(ax + \frac{1}{2}) - (ay + \frac{1}{2}) > 1$, so f(x) > f(y).

Lemma 2. If x and y are integers, and $y = [ax + \frac{1}{2}]$, then $x + y = [ay + \frac{1}{2}]$.

Proof. Write $ax + \frac{1}{2} = y + r$, where 0 < r < 1. Then

$$(1 + a)x + \frac{a}{2} = ay + ar$$

$$x + y + r - \frac{1}{2} + \frac{a}{2} = ay + ar$$
 and $ay + \frac{1}{2} = x + y + \frac{a}{2} + (1 - a)r$.

Since $1 < a = 1.618 \dots < 2$ we have $0 < a - 1 < \frac{a}{2} < 1$ and the result follows.

We now prove the theorem. Let the first row of the array consist of the Fibonacci numbers 1, 2 = f(1), 3 = f(2), 5 = f(3), 8 = f(5), and so on. The first positive integer not in this row is 4; let the second row be 4, 6 = f(4), 10 = f(6), 16 = f(10), and so on. The first positive integer not in the first or second row is 7; let the third row be 7, 11 = f(7), 18 = f(11), and so on. We see by Lemma 1 that there is no repetition. By Lemma 2 each row has the Fibonacci property. Finally, this process cannot terminate after a finite number of steps since the distances between successive elements in a row increase without bound. This completes the proof.

For the array just constructed, let a_n be the n^{th} number in the first column and b_n the n^{th} number in the second column. I conjecture that for $n \ge 2$ the difference $b_n - a_n$ is either a_i or b_i for some i < n.

We comment that the fact that $F_{n+1} = [aF_n + \frac{1}{2}]$, where F_n is the n^{th} Fibonacci number, is Theorem III on p. 34 of the book *Fibonacci and Lucas Numbers*, Verner E. Hoggatt, Jr., Houghton Mifflin, Boston, 1969.

224

\$O