FIBONACCI SEQUENCE AND EXTREMAL STOCHASTIC MATRICES

R. A. BRUALDI¹ University of Wisconsin, Madison, Wisconsin 53706 and J. CSIMA² McMaster University, Hamilton, Ontario, Canada L8S 4K1

ABSTRACT

The purpose of this note is to exhibit an interesting connection between the Fibonacci sequence and a class of three-dimensional extremal plane stochastic matrices.

1. A three-dimensional matrix of order n is a real valued function A defined on the set $J_{\beta,n}$ of points (i,j,k), where $1 \le i,j$, $k \le n$. It is customary to say that the value of this function at the point (i,j,k) is an entry of the matrix and to denote it by $a_{i,j,k}$. A plane is defined to be a subset of which results when one of i,j,k is held fix-ed. A plane is called a row, column, or horizontal plane according as to whether i, j, or k is held fixed. A matrix A is plane stochastic if its entries are non-negative numbers and the sum of the entries in each plane is equal to one. If A and B are plane stochastic matrices of order n and $0 \le a \le 1$, then aA + (1-a)B is also a plane stochastic matrix. Thus the collection of all plane stochastic matrices. Jurkat and Ryser [3] have raised the question of determining all the extremal stochastic matrices. This appears to be a very difficult problem. One class of extremal plane stochastic matrices is formed by the permutation matrices (with precisely one non-zero entry in each plane). But unfortunately very little is known about other extremal matrices.

In what follows we construct a class of extremal plane stochastic matrices using Fibonacci numbers.

2. If A is a three-dimensional matrix of order n, then the pattern of A is the set of all points (i, j, k) for which $a_{ijk} \neq 0$. Jurkat and Ryser [3] observed that a plane Stochastic matrix A is extremal if and only if there is no plane stochastic matrix other than A which has the same pattern as A.

We are now ready to construct a class of extremal stochastic matrices. Let $S_n \subseteq J_{3,n}$ (n = 1, 2, ...) be the pattern defined as follows: The points (n, n, n - 1) and (1, n, n) belong to S_n . In addition (i, j, k) $\in S_n$ whenever one of the following holds:

(i) i = j = k for i = 1, ..., n - 1;

(ii)
$$i = j + 1$$
 and $k = n$, for $i = 2, ..., n$;

(iii) i = j - 1 = k + 1, for i = 2, ..., n - 1.

The matrix T_n in Figure 1 is a two-dimensional representation of this pattern. The (i,j)-entry of T_n equals k if and only if $(i,j,k) \in T_n$. Fortunately, T_n is such that (i,j,k), $(i,j,k') \in T_n$ implies k = k'.

The (two-dimensional) matrix B_n indicated in Figure 2 represents a three-dimensional matrix A_n of order *n*. If $(i,j,k) \in S_n$, then $a_{ijk} = b_{ij}$; if $(i,j,k) \notin S_n$, then $a_{ijk} = 0$. The sequence $f_1, f_2, f_3, f_4, \cdots$ is the Fibonacci sequence 1, 1, 2, 3, \cdots .

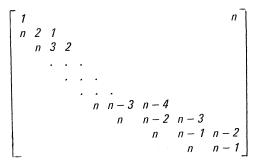
Theorem. The matrix A_n is an extremal plane stochastic matrix of order *n*.

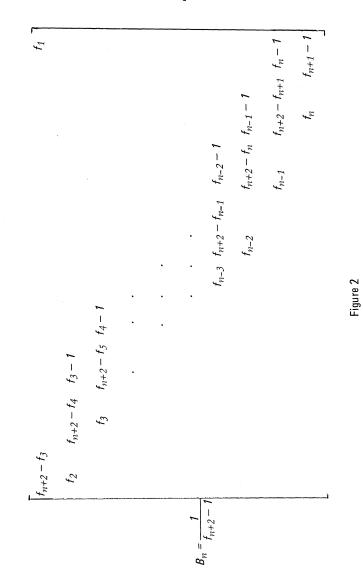
Proof. We observe that all the indicated entries of B_n are positive so that the pattern of A_n is S_n . In order to verify that A_n is plane stochastic, we compute the plane sums of A_n . First we observe that the row

This paper was written while the authors were on an exchange visit to the Mathematical Institute of the Hungarian Academy of Sciences, Budapest.

¹Research supported by both the U.S. and Hungarian Academy of Sciences.

² Research supported in part by the National Research Council of Canada (Grant No. A 4078) and by the Hungarian Institute for Cultural Relations.





334

[DEC.

;

and column plane sums of A_n are the row and column sums of B_n . It is more convenient to verify that the row and column sums of $C_n = (f_{n+2} - 1)B_n$ are all $f_{n+2} - 1$. The first row sum of C_n equals

$$f_{n+2} - f_3 + f_1 = f_{n+2} - 1;$$

the last row sum of C_n is clearly $f_{n+2} - 1$. The *i*th row sum of C_n , $2 \le i \le n - 1$, equals

$$f_i + (f_{n+2} - f_{i+2}) + (f_{i+1} - 1) = f_{n+2} - 1.$$

The first, second, and last column sums of C_n equal $f_{n+2} - 1$. The j^{th} column sum of C_n , $3 \le j \le n - 1$, equals

$$(f_{i} - 1) + (f_{n+2} - f_{i+2}) + f_{i+1} = f_{n+2} - 1.$$

Thus far we have verified that the row and column plane sums of A_n are one. Now we compute the horizontal plane sums of A_n . The k^{th} horizontal plane sum of A_n , $1 \le k \le n - 1$, equals

$$\frac{(f_{n+2}-f_{k+2})+(f_{k+2}-1)}{f_{n+2}-1} = 1.$$

The n^{th} horizontal plane sum equals

$$\frac{f_1 + f_2 + \dots + f_n}{f_{n+2} - 1} = 1.$$

Thus A_n is a plane stochastic matrix.

To show that A_n is extremal, it suffices to show that there is no other plane stochastic matrix with pattern S_n .

Let *E* be a plane stochastic matrix with pattern S_n . Let a > 0 be the (1,n,n)-entry of *E*. Let $G = [g_{ij}]$ be the two-dimensional representation of *E*. We claim that *G* has the form indicated in Figure 3.

$$G_{n} = \begin{bmatrix} 1 - (f_{3} - 1)a & f_{1}a \\ f_{2}a & 1 - (f_{4} - 1)a & (f_{3} - 1)a \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & &$$

Figure 3

We verify this by using step-by-step the fact that the plane sums of E are one. For the first row of G we have $g_{1n} = a = f_1 a$, and from $g_{11} + g_{1n} = 1$ we conclude that

$$g_{11} = 1 - a = 1 - (f_3 - 1)a$$
.

For the second row of G we have $g_{21} = 1 - g_{11} = a = f_2 a$. Since the first horizontal plane sum is one,

$$g_{23} = 1 - g_{11} = a = (f_3 - 1)a$$

Finally, $g_{22} = 1 - (f_4 - 1)a$ can be determined by considering the second row sum of G. Suppose it has been verified that the first *i* rows of G are as claimed for some *i* with $2 \le i \le n - 1$. Considering the *i*th column sum of G we compute that

$$g_{i+1,i} = 1 - g_{i-1,i} - g_{ii} = 1 - (f_i - 1)a - (1 - (f_{i+2} - 1)a) = f_{i+1}a \,.$$

Considering the i^{th} horizontal plane sum of E, we compute that

$$g_{i+1,i+2} = 1 - g_{ii} = 1 - (1 - (f_{i+2} - 1)a) = (f_{i+2} - 1)a.$$

Finally, considering the $(i + 1)^{st}$ row sum of G, we compute that

$$g_{i+1,i+1} = 1 - g_{i+1,i} - g_{i+1,i+2} = 1 - f_{i+1}a - (f_{i+2} - 1)a = 1 - (f_{i+3} - 1)a.$$

Thus by induction we have verified our claim up to and including the $(n - 1)^{st}$ row of G. By considering the $(n - 1)^{st}$ column sum and n^{th} row sum of g in turn, we calculate that

FIBONACCI SEQUENCE AND EXTREMAL STOCHASTIC MATRICES

DEC. 1977

$$g_{n,n-1} = 1 - g_{n-2,n-1} - g_{n-1,n-1} = 1 - (f_{n-1} - 1)a - (1 - (f_{n+2} - 1)a) = f_n a,$$

and

$$g_{n,n} = 1 - g_{n,n-1} = 1 - f_n a$$
.

Thus our claim is verified.

Now by considering the n^{th} horizontal plane sum of E, we see that a is uniquely determined. Hence E is unique, and thus $E = A_n$. This completes the proof of the theorem.

Constructions for other extremal matrices and additional properties of planar stochastic matrices can be found in [1, 2].

REFERENCES

- 1. R. A. Brualdi and J. Csima, "Stochastic Patterns," to appear.
- 2. R. A. Brualdi and J. Csima, "Extremal Plane Stochastic Matrices of Dimension Three," to appear.
- 3. W. B. Jurkat and H. J. Ryser, "Extremal Configurations and Decomposition Theorems I," *J. Algebra*, Vol. 9 (1968), pp. 194–222.

BELL'S IMPERFECT PERFECT NUMBERS

EDWART T. FRANKEL

Schenectady, New York

A perfect number is one which, like 6 or 28, is the sum of its aliquot parts. Euclid proved that $2^{p-1}(2^p - 1)$ is perfect when $(2^p - 1)$ is a prime; and it has been shown that this formula includes all perfect numbers which are even.¹

In Eric Temple Bell's fascinating book², the seven perfect numbers after 6 are listed as follows:

28, 496, 8128, 130816, 2096128, 33550336, 8589869056.

Checking these numbers by Euclid's formula, I found that

 $2^{8}(2^{9}-1) = 256 \times 511 = 130816$

and

 $2^{10}(2^{11}-1) = 1024 \times 2047 = 2096128$.

However, $511 = 7 \times 73$; and $2047 = 23 \times 89$.

Inasmuch as 511 and 2047 are not primes, it follows that 130816 and 2096128 are not perfect numbers, and they should not have been included in Bell's list.

² The Last Problem, Simon and Schuster, New York, 1961, page 12.

¹Encyclopedia Britannica, Eleventh Edition, Vol. 19, page 863.