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Let the number g be a primitive root (mod p). If x = g satisfies the congruence
(1) xZ = x+1 (modp),

then the g is called Fibonacci Primitive Root. D. Shanks [1] and D. Shanks, L. Taylor [2] dealt with the con-
dition of existence of the Fibonacci Primitive Roots and they proved a few theorems.
In connection with the Fibonacci sequence

Fo=1F; =1 Fr=1 F;3=2-(F, = F,4 +Fu2),

the natural number a = afp) is called by D. Jarden [3] the rank of apparition of p if F is divisible by p and F;
is not divisible by p incase/ < a.

In this article, we shall deal with the connections between the rank of apparition of prime p in the Fibonacci
sequence and the Fibonacci Primitive Roots. We shall prove the following theorems:
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Theorem 1. The congruence x“ =x + 7 (mod p) is solvable if and only if p — 7 is divisible by afp) or p=5.

Theorem 2. |fp = 10k £ 1 is a prime number and there exist two Fibonacci Primitive Roots (mod p) or
no Fibonacci Primitive Root exists, then afp) <p — 1.

Theorem 3. Thereis exactly one Fibonacei Primitive Root (mod p) if and only ifalp)=p — Torp = 5.

D. Shanks [1] proved that if (1) is solvable then p = 5 or p = 70k £ 1. But D. H. Halton [4] proved that
Fp—(5/p) is divisible by the prime p {p # 5), where (5/p) is the Legendre’s symbol, and it is well known that if
p = 10k £ 1, then (5/p) = 1, therefore Fp_1 is divisible by p. So it is enough to prove the following lemma for
the verification of the first part of Theorem 1:

Lemma 1. I F, is divisible by number p, then n is divisible by the rank afp) of p and ifn is divisible by
afp), then F,, is divisible by p.

Let a = afp) and n = a-m +r, where 0 < r < a. N. N. Vorobev proved that F,,. = Fp-Fopq + Fi_q-Fc ([B],
p. 10) and Fy,., is divisible by F5, for every natural numbers 4 and ¢ ([5], p. 29). For this reason p is a divisor
of F .., and if p is a divisor of £, then

Fu = Famtr = Fan-Fr1# Fam-1-Fr = Fam-1-F, = 0 (mod p).

But F,,;, and F,,,_; are neighboring numbers of the Fibonacci sequence, for that very reason £, 7 is prime
to Fu,y (see [5], p. 30). Sop is not adivisor of F,,,_; because p is a divisor of F,,, and £, =0 (mod p). From
this follows a = r by reason of definition of a = afp). Thus n is divisible by a=afp/. Should it happen thatn is
divisible by a = afp), then, due to the Vorobev’s previous theorem, £, is divisible by Fu, ) and so £, isdivisible
by p, too. With this we proved the Lemma 1 and from this follows the proof of the first part of Theorem 1.

I1f p — Tis divisible by afp), then by reason of Lemma 1 Fp‘1 is divisible by p. From this follows that (5/p) =
= 1. Namely, if (5/p) = —1, then Fp+1 is divisible by g, too, and so Fo=Fpr1— Fp 1 also is .divisicle by p.
But F; and F are relatively prime for every natural number /, therefore (5/p) = 1. From this follows that
p = 10k £ 1 and so the congruence (1) is solvable. It completes the proof of Theorem 1.

Before the proof of Theorem 2 and Theorem 3, we shall prove two Lemmas.

Lemma 2. |f the congruence x?=x+7 (mod p) is solvable, p # 5 and the two roots are g4, g, then
g1 — g2 #0 (mod p).
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Lemma 3. 1f x is a solution of the congruence X% =x+1 (mod p), then

ko Fr-x+ Fp_; (mod p)
for every natural exponent .
Let us prove the Lemma 2 first. If (1) has solutions g; and g2, theng; + g5 =1 (mod p) and g, =
g1 (mod p), respectively (see [1]). Let us suppose thatg; — g2 =0 (mod p), that is

(2) 291 = 1 (mod p).

g¢isaroot of (1) and sog1 g1+ 7 (mod p). Letus add this congruence to (2). Then we getg1 +g7=2(mod
p) and from this 491 +4g, =8 (mod p) and (2g; + 7)2 =9 (mod p), respectively. From the later congruence
we get 2g; + 7=3 or2g; + 1 =-3 (mod p) and from these subtracting the congruence (2) we get 5 = 0
or 7 =0 (mod p). But these are true only if p = 5 according to p > 7, which proves the Lemma 2. Incasep = 5
really g; — g2 =0 (mod p) because gy =3 and g =7—g; = -2 =g4 (mod 5).

We shall carry out the proof of the Lemma 3 by induction aver 4. In the cases £ = 7 and & = 2 indeed
2
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x=x+0=Fpx+Fyp and x* =x+1=Fyx+Fy; (modp).

_After thisif K > 2 and the statement is true for exponents smaller than &, then
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= FrgxtFrp+tFrz2x+Fps3
= Fpex+ Fp_¢ {modp)

which proves Lemma 3.

Now let us suppose thatp = 70k 7. In this case by reason of [1], (1) is solvable. If both roots g ; and g5 are
primitive (mod p), then, according to Lemma 3 (using for every pnmmve motg(p~ Nz - _4 (mod p) )
g2 = Fp-1)12:91 + F(p-1)/2-1 = =1 (mod p)

|

gp? = Fip-1)12°92* Frp-1)j2-1 = —1 (mod p).
The difference of the congruences gives: F(p-1)/2(91 — g2} =0 (mod p) and from this follows by reason of
Lemma 2 (p # 5) that Frp-1)/2=0 {mod p) which by reason of Lemma 1 proves the first part of Theorem 2.
Let us suppose that neither g4 nor g, is primitive root (mod p) and g4 belongs to the exponent 77 and g be-
longs to the np. Then ny and 11, are divisors of p — 7 (n4, ny <p — 1) and

1,

(3) g1 =1, gy =1 (mod p).
1f ny = ny = n, then similarly to the previous cases, using the congruences (3) and the Lemma 3, we get £, =0
(mod p) and so n is divisible by alp), thatisalp)<n <p— 1.

If ny # ny, then we can suppose that ny > ny. But g4-g2 =—17 (mod p) (see [1]) for this reason, using the
congruences (3),

n, _

g7 =gyt gs* = (g5-92)"2 = (-=1)"2 (modp).

g1 belongs to the exponent 77 (mod p) and ng>ny, sonymustbe an odd number and g2 =—1 (mod p). In
this case -‘71”2 =1 (mod p) and from this follows that n is a divisor of 2Zny, ButZny < 2ny,son¢ =2n, and

(4) 921 _ gZHq =1

According to congruences (3) and (4) and Lemma 3:

H

(mod p).

my

94 ;Fn,'g1+Fn‘,1 =1 (modp)

I

o

g2 EFnl'gZ’LFﬂ‘—I = 1(modp)
and from this we get, as above, using Lemma 2: Fy, =0 (mod p) and so by reason of Lemma 15, is divisible
by afp). Thus a(p) < ny <p — 1 which proves the second part of Theorem 2.
Theorem 3 is true in the case p = 5 (see [1]), therefore we can suppose further on thatp # 5. Let it be now
alp) =p — 1. In this case, by reason of Thedrem 1, the congruence (1) is solvable. There is exactly one primi-
tive root (mod p) between the two roots because otherwise afp) < p — 1 would follow according to Theorem 2.
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And conversely, if congruence (1) is solvable, one of the roots is primitive and the other is not {mod p}, that is
ny=p — 1, then it follows from the foregoing that n, = (p — 7)/2 and n, is an odd number. Let us suppose
that ap) < p — 7as opposed to Theorem 3 and let ¢ denote the least common multiple of n5 and afp). ¢ is di-
visible by n, and afp) therefore

] = gg = Fagat Fgq = Fgq (modp)
(because p is a divisor of £, according to Lemma 1). Using this congruence we get

99 = Fag1+Fy g =Fgq =1 (modp).
From this follows ¢ = p — 7 because ny and afp/ are divisors of p — 7 and g4 is a primitive root (mod p). But
g =p — 7Tisaneven number and n, is odd, therefore afp/ is an even number.

N. N. Vorobev proved that for every natural number n F,fﬂ = Fye Fag # (—1)7 ([6], p. 11). Letus use this
equation for the case n = afp) — 7, it derives

2
Fatp)-1 *Fapyi = Fagp)# (= 1%,
But, on the one hand, afp/ is an even number, on the other hand,

Fa(p)+1 = Fa(p) + Fa(p)—j = Fa(p)~1 (mod p),
S0 Fj(ﬁ)% =1 (_m?f? p). From this Fap,) ¢ =—1 (mod p) follows because ir the case F o) ¢ = 1 (mod p)
g1 cannot be a primitive root {mod p) by reason of

(5) g;’(P) = Fop)1+ Fapprt = Fagp)s =1 {modp)
and the condition afp) < p — 1. From the latter it follows that, similarly to (5},
g?(p) = —1 (mod p).

But g is a primitive root {mod p) and afp) < p — 7 therefore afp) = (p — 1)/2=n,. However, afp) =n3 is im-
possible, for a(p/ is even and 515 is an odd number, so the condition a(p) < p ~ 7 is impossible. Thenafp/=
p — 1, which completes the proof of Theorem 3.

The reverse of Theorem 2 follows from Theorem 3 as well: If the congruence x“ =x + 7 {mod p) is solvable
and a(p) < p — 1, then both roots are primitive (mod p) or neither of them is primitive. The point is that in this
case, by reason of Theorem 3, there cannot be exactly one primitive root.
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