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ON THE EQUALITY OF PERIODS OF DIFFERENT
MODULI IN THE FIBONACC! SEQUENCE

JAMES E. DESMOND
Pensacola Junior College, Pensacola, Fiorida 32504

Let m be an arbitrary positive integer. According to the notation of Vinson [1, p. 371 let sfm/ denote the period
of F,, modulo m and let f(m) denote the rank of apparition of /m in the Fibanacci sequence.

Let p be an arbitrary prime. Wall [2, p. 528] makes the following remark: “The most perplexing problem we have
met in this study concerns the hypothesis sfp 2)# s(p). We have run a test on a digital computer which shows that
s(p?) # slp) for all p up to 10,000; however, we cannot yet prove that s(p2) = sfp) is impossible. The question is
closely related to another one, “can a number x have the same order mad g and mod pz?;',"for which rare cases .give
an affirmative answer (e.g., x =3, p = 11, x =2, p = 1093); hence, one might conjecture that equality may heid for
some exceptional p."”

Based on Ward's Last Theorem {3, p. 205] we shall give necessary and sufficient conditions for sp )= sip).

From Robinson {4, p. 30] we have form,n >0

(1) Fu+r = F, (mod m) for all integers 7 if and only if sfm)|n .

¥mn>0andm

n, then Fyy )4 = Fy (mod m) for all 7. Therefore by (1), sfm) |s(n). So we have for m,n >0
(2) m|n implies s(m)|s(n).

It is easily verified that for all integers n
(3) Fopit = (=" 1+ Fpygly, .

From Theorem 1 of [1, p. 39] we have that sfm/) is even if m > 2.
An equivalent form of the following thearem can be found in Vinson [1, p. 421.

Theorem 1. We have
i) s(m) =4f(m)}if and only if m > 2 and f(m/ is odd.
ii) sfm}=f(m)ifand only if m = 1 or 2 and sfm)/2 is odd.
i} sfm) =2f(m} if and only if f{m) is even and s(mJ/2 is even.

To prove the above theorem it is sufficient, in view of Theorem 3 by Vinson [1, p. 42], to prove the following:

Lemma. m =1 or 2 or sfm)/2 is odd if and only if § lm and 2|f{p) but 4 | f(p) for every odd prime, p, which
divides m.

Proof, Let m = 1 or 2 or sm/)/2 be odd. 1f m = 1 or 2, then the conclusion is clear. So we may assume that m >
2 and s/mJ/2 is odd, Suppose 8|m. Then by (2), 12 = 5(8) |s(m). Therefore s(m//2 is even, a contradiction, Hence
8m.

{_et p be any odd prime which divides m. From [1, p. 37] and (2), f(p)|s(p}|s(m). Therefore 4 { f(n). Suppose
2| f(p). Then by Theorem 1 of [1, p. 39] and (2), we have 4f(p) = s(p)|s(m), a contradiction. Thus 2|f(p).

Conversely, let8 [ m and 2|f(p/ but 4 | f(p) for every odd prime, p, which divides m. Let p be any odd prime which
divides m and let e be any positive integer. From [1, p. 401 we have that f(p) and f(p ¢} are divisible by the same
power of 2. Therefore 2|#(p®) and 4 | f{p®). Then since
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PeIF e =F
P08 = Fpenat vz
and (F,,, L) =d <2 < p forall integers n, we have p¢ lLf(
p

and p®f 1 Soby (3),

F
ftr®)i2 ®)
e
F = (=1)fP7)I2* = 1 (mod pe) .
fip®)+ P
Therefore by definition, f(p¢) = s(p®).
Now, suppose that m > 2 and s(m)/2 is even. Let m have the prime factorization m = 2“p;1 ---p,a’wi'tha> 0.
Then by [1, p. 41] )
stm) = Lem. {s(2%, s(p{")} .
1<i<r
Then 4|s(m) implies 4 |s(2%) or 4ls(pff} for somej such that 1 <j <r. 1f 4|s(2), thena > 3. Thus 8|m, a contra—

diction. If 0:|s(pff) = f(p;f), then we have another contradiction. Therefore s(m)/2 is odd orm = 1 or 2.
Various relationships of equality between integral multiples of s(m/, f(m), s(t) and f(t) for arbitrary positive inte-
gers m and t can be obtained as corollaries to Theorem 1. We mention only the following:

Corollary 1. 1fm>2and ¢ >2and

i) s(m)/2 and s(t)/2 are both odd, or

ii) f(m) and f(t) are both odd, or
iii) sfm)/2, s(t)/2, f(m) and f(t) are all even,
then sfm) = s(t) if and only if f(m) = #(t).

Theorem 2.  Letm and t be positive integers such that m |L (), 2 if f(m) is even and t|Lfy),2 if f(t) is even.
Then sfm) = s(t) if and only if f{m) = f(t).

Proof. Lets(m) = s(t). We have m = 7 iff t = 7 and m = 2 iff t = 2, so we may assume that m >2 and ¢t > 2. By
Corollary 1, we need only consider the case; s(m)/2 = s(t)/2 is even and #(m) and f(t) have different parity, say 7(m)
is odd and 7(t) is even. Then by Theorem 1, 4f(m) = s{m) = s(t) = 2f(t). Therefore f(t)/2 = f(m) is odd. Since f(t) is
even we have by hypothesis that t|Lf(t)/2. Thus by (3),

Freyer = (=12 = 1 mod 1)

But t|Fft) and f(t) < s(t). This contradicts the definition of s(t). Therefore the case under consideration cannot occur.
Conversely, let f(m) = f(t). As before we may assume that m > 2 and ¢ > 2. By Corollary 1, we need only -consider
the case; f/{m) = f(t) is even and s(m)/2 and s(t)/2 have different parity, say sfm)/2 is odd and s(t)/2 is even. Then by
Theorem 1,
2s(m) = 2f(m) = 2f(t) = s(t).

Therefore f(t)/2 is odd. Since (t) is even we have t|L /4)/2. Thus by (3), Ffr¢)+1 =1 (mod ¢). But t|Fyy) and f(t) <
s(t). This is a contradiction and therefore the case under consideration cannot occur.

Corollary 2. Letp and g be arbitrary odd primes and e and a be arbitrary positive integers. Then s(p€) = s(g*)
if and only if f(p€) = f(g?).

Proof. By Theorem 2 we need only show that if f(p®) is even then p®|L . We have

f(p€)i2
(F

F oo =F L d p°fF d L =
109 " Ttz ™ P A e @ e e
Thusp®|L

d<2<p

fp€)i2’

Corollary 3. Letépn(x) =x+x2/2 +..+x"/n, and let k(x) = kplx) = (xP~1 _ 1)/p, where p is an odd prime
greater than 5. Thens(p“) = s(p) if and only if ¢ ¢,_1)/2(5/9) = 2k(3/2) (mod p).

[Continued on page 96.]



