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Let m be an arbitrary positive integer. According to the notation of Vinson [1, p. 37] let s{m) denote the
periad of F,, modulo m and:let #{m) denote the rank of apparition of m in F,, .
It is easily verified that

(1) Font1 = (1) + Fulpeg = (—1)" +Fpsly,

for all integers n.
In the sequel we shall use, without explicit reference, the well known facts that

Fon = Fuly,
and that £, and L,, are both odd or both even and
(Fu,ly) =d <2, and  Fp|Fn
for all integers n and m # 0.
Lemma 1. Fj, =0 {modm)and Fa,+; =(—1)" (mod m) if and only if F,, = 0 (mod m).

Proof.  Let Fz,, =0 (mod m) and Fp,.+1 =(—1)" (mod m). Then by (1), F,, L,,+1 =0 (mod m). Since
Fy,=F,L,=0(modm), we have

Folut2 = Fulysg# Fuly =0 = Fylysg — Fuly = Fuly g (modm) .

So whether n is negative or non-negative we obitain after finitely many steps that F,,L; = F,, =0 (mod m).
Conversely, let £, =0 (mod m). Then F5,, = F,,L,, =0 (mod m) and by (1), F 2,17 =(—1)" (mod m).

Lemma 2. Fj,=0{modm)and Fz,.;=(—1)""1 (mod m) if and only if L,, =0 (mod m).
Proof. Analogous to the proof of Lemma 1.

The following lemma can be found in Wall [2, p. 526]. We give an alternative proof,

Lemma 3. 1fm > 2, then s(m) is even.

Proof. Suppose s(m) is odd, We have by definition of sfm) that

Fastmyr1 = Fstm)+s(m)r1 = Fstmpr1 =1 = (~1)5(")* (mod m) .
Also
Fastm) = Fsm)Ls(m) = 0 (mod m).
Therefore by Lemma 2, Ls/y,) =0 (mod m). But
(Fs(m); Ls(m)} =d<2

which contradicts the fact thatm > 2.

An equivalent form of the following theorem, but with a different proof can be found in Vinson {1, p. 42].

Theorem 1. We have

i} m > 2and fm) is odd if and only if sim) = 4f(m)

i) m=1o0r2ors(m)/2is odd if and only if sfm) = f{m)
iii) ffm) is even and s(m)/2 is even if and only if sfm) = 2f(m).

Proof, We first prove the sufficiency in each case.
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Case i): Letm > 2 and f(m) be odd. From Vinson [1, p. 37] we have f(m)|s(m). Since s(m) is even for m >
2 we know that s(m) #f(m) and s(m) #3f(m). We have F2(,)=0 (mod m) and by (1),

Faftmyer = (=™ = —1 (mod m).
Therefore sfm) #2f(m) since m > 2. But F4f(m) =0 (mod m) and by (1),
Faftmyes = (~1)210™) = 1 (mod m) .
Therefore sfm) = 4f(m).
Case ii): The conclusion is clear for m = 1 or 2. Letm > 2 and s/m)/2 be odd. Then by Case i), f{m) is even.
80 F2f(m)=0 (mod m) and by (1),
Faftmper = (=17™ = 1 (mod m)
which implies that s(m) < 2f(m). s(m) #2f(m) since s{m)/2 is odd and #(m) is even. Therefore since f(m)|s(m),
we have sm) = f(m).
Case iii): Let f{m) be even and s(m)/2 be even. Then m > 2. We have F £, )= 0 (mod m) and by (1),
Faftmys1 = (1™ = 1 (mod m).
Therefore s(m) < 2f(m). Now, Fy,,) =0 (mod m) and Fyppy)pq = 1= (- 1)5(™)12 (mod m). So by Lemma 1,
Fs(m)j2 =0 (mod m). Thus s(m) #f(m) and therefore since f(m)|s(m) we have s(m) = 2f(m).

The necessity in each case follows directly from the implications already proved.
The following corollary is part of a theorem by Vinson [1, p. 39].

Corollary 1. Letp be any odd prime and e any positive integer. Then we have
i). f(p©)is odd if and only if s(p€) = 4f(p¢)
ii). f(p®)iseven and f(p€)/2 is odd if and only if s(p¢) = f(p€)
iii). f(p€)isevenand f(p€)/2 is even if and only if s(p€) = 2f(p¢).
Proof. By Theorem 1, we need only prove that s(p€)/2 is odd if and only if #(p€) is even and f(p®)/2 is

odd. The sufficiency is clear by Theorem 1, ii).
Conversely, let 7(p¢) be even and #(p¢)/2 be odd. Then

F oo =F o L o =0 (modp9.
109~ Fpenat e = 0 1motP)
Since
F L =d <2
Froen tpeys! =9 <2 <0
we have L =0 (mod p®). Therefore by (1),

ftr®)12 = (- 7)(f(P JI2)F1 = 1 (mod p©).

f(p )1
Thus s(p€) = f(p€) and so s(p€)/2 is odd.

Definition. |f m divides some member of the Lucas sequence, let g(m) denote the smallest positive in-
teger n such thatm |L,, .

If m divides no member of the Lucas sequence, we shall say that g(m) does not exist.

From Vinson [1, p. 37] we have
(2) F,, = 0 (modm) if and only if f(m)|n.

It is interesting to note from the following proof that if 4|f(4n), then g(4n) does not exist.

Lemma 4. Ifnisan odd integer and g(4n) exists, then 4|Lfr4,,)/2.

Proof By observing the residues of the Lucas sequence modulo 4 we find that 4\L (4n impliesg(4n) =
3 + 6k for some integer k. Therefore g(4n) is odd. We have 4n|L g 4,,)|F2g(4n)- ﬁv (2), f(4n)|29(4n).
Hence 4 | f(4n). Since 4|F (4n) We have by (2) that 6 = f(4)\f(4n Smce f4n)/2 is odd and 3|f(4n)/2 we
have from Carlitz [3, p. 15] that 4 = L3|Lfian))2 .

Theorem 2. f m > 2 and g(m) exists, then 2g(m) = f(m).
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Proof. We have m|Lg(m)|F2g(m). So by (2), flm)|2g(m). Suppose f(m) is odd. Then flm) \g(m)
and therefore by (2),m|Fg). Thus m\(L g/ ), Fg(m)) = d < 2, a contradiction since m > 2, Hence f(m) is
even.

To complete the proof it suffices to show that m [L £, )/2 which implies g(m) = f(m)/2. We have

m|Ffim) = Fom)12Lfom)/2 -
Let m = mymz where m|Ffrm) 2 and m2 |L 1 /2. Since f(m)/2|g(m) we have m 1 |Frm)j2 | Fg(m). There-
fore my|(Fg(m), Lom)) =d <2.Somy=10r2.1fmy=1,thenm; =m|Lf(m)/2, the desired conclusion.
Assume my = 2. Then m is even. Since 2|F ¢/ )/2 we have 2|Lfm)/2. If mz = m/2 is odd, then Zm; =
m |Lfrm)/2, the desired conclusion. Assume m 7 =m/2 is even. Since g(8) does not exist we know that 8 f m.
Therefore my/2 = m/4 is odd. Since g(4(m,/2)) = g(m) exists we have by Lemma 4 that 4|Lf(m)/2. Thus
m = 4(m3/2) |L fm)/2. The proof is complete.

Corollary 2. For any odd prime p and any positive integer e, g(p®) exists if and only if #(p°) is even.

Proof. The sufficiency follows from Theorem 2 and the necessity follows from the facts Fy,, = F,, L,
and (F,, L,)=d <2 <p for all integers n.

Theorem 3. We have

i) g(m) exists and is odd if and only if sfm) = f(m)
ii) gfm) exists and is even if and only if s(m) = 2f(m) and Ff(m)ﬂ =—1 (mod m)
iii) g(m) does not exist if and only if either s(m) = 2f(m) and F ¢, )1 # =1 (mod m) or s{m) = 4f(m).

Proof.  Case i): Let g(m) exist and be odd. The case m = 1 or 2 is clear. Assume m > 2. By Theorem 2,
ffm) = 2g(m). Therefore by (1),
Fitmyer = (=16 = 1 (mod m) .
Hence s(m) = f(m).
Conversely, let sfm) = f(m). The case m = 1 or 2 is clear, Assume m > 2. By Theorem 1, s/m)/2 is odd.
Therefore
Fs(m) = 0 (modm) and  Fopp)rg = 1 = (—1)(S(MI2)* (mod m) .

Hence by Lemma 2, Ly )/2 = 0 (mod m) and thus g(m) exists. By Theorem 2,s(m) = f(m) = 2g(m). There-
fore gfm) is odd.

Case ii): Let g(m) exist and be even. Then'm > 2 and by Theorem 2, f(m) = 2g(m). Thus 4|f(m) and so by
Theorem 1, s(m) = 2f(m). By (1), Ftm)+1 =~ 7)8(m)*1 = _1 (mod m).

Conversely, let s(m) = 2f(m) and Ff/p )14 = —1 (mod m). We have £, ) = 0 (mod m). By Theorem 1,
m > 2 and f(m) is even. If f{m)/2 is odd, then Fitmpr1 = (- 1)5(m)12 (mod m) which implies by Lemma 1
that Ffrm)/2=0 (mod m), a contradiction. Hence f(m)/2 is even. Therefore Frry, )+ 1 = (— 7)(f(m)12)+1 (g
m) which implies by Lemma 2 that L ¢/, )/2 = 0 (mod m). Thus g(m) exists and by Theorem 2, f/(m)/2 = g{m)
is even.

Case iii): Follows from Cases i) and ii) and from Theorem 1.

Corollary 3. Forany odd prime p and any positive integer e we have
i) g(p€) exists and is odd if and only if s(p¢) = f(p¢)

ii) g(p¢) exists and is even if and only if s(p€) = 2f(p€)

iii) g(p€) does not exist if and only if s(p€) = 4f(p®).

Proof.  Inview of Theorem 3 we need only prove that s(p€) = 2f(p®) implies Ff(pe)+1 =—1(mod p®).
By Corollary 1, if s(p€) = 2f(p€), then f(p®) is even and #(p€)/2 is even. We have

=0 (modp® and )=d<2<np.

F = F L . F Lo e
fr)  fe)iz f(p©)i2 fir®)I2’ ~fir°)i2
Therefore L =0 (modp®). Soby (1),
ftr€)i2 e
F = (-1)fP )2 = _q (mod p®) .
foopet = g
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Theorem 4. Letp be an odd prime and e be any positive integer. Then
i) g(p€) exists and is odd if p = 11 or 19 (mod 20)

ii) g(p€) exists and is even if p = 3 or 7 (mod 20)

i) g(p€) does not exist if p = 13 or 17 (mod 20)

iv) gfp€) is odd or does not exist if p = 21 or 29 (mod 40).

Proof. Follows from Vinson [1,p.43] and Corollary 3.
Wall [2, p. 525] has shown that the period of L,, modulo m exists for all positive integers m.

Let A(m) denote the period of L,, modulo m.

Corollary 4. Letg(m) exist. Then
i) m=1or2ifand only if h(m) = g(m)
ii) m > 2 and g(m) is odd if and only if A(m) = 2g(m)
iii) g(m) is even if and only if A{m) = 4g(m).
Proof. Since gfm) exists and g(5) does not exist we have (m, 5) = 1. So from the corollary to Theorem 8
of Wall [2, p. 529] we have s(m) = h(m). We first prove the sufficiency in each case.
Case i) is clear.
Case ii): By Theorems 2 and 3, 29(m) = f(m) = s{m) = h{m).
Case iii): By Theorems 2 and 3, 4g(m) = 2f(m) = s(m) = h(m).
The necessity in each case follows directly from the implications already proved.
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