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Recently there have appeared in this Quarterly a number of generalizations of the Fibonacci number F,, to func-
tions F(x), defined for all real x, and, in general, continuous everywhere.
For such a generalization two properties are particularly desirable:

(A) F(x) = F, for x = n anatural number
and
(B) F(x +2) = F(x)+ F(x +1).

Spickerman [6] proved some general properties of functions satisfying (B).

Of the various generalizations Halsey’s [1] does not generally satisfy (B) (see [7]) and even if defined for all real x,
is not continuous at x = 7.

Heimer's function [2] satisfies (A) and (B) but is quasilinear. Eimore’s function [3] is not a generalization in the
above sense, it is a function of a natural number variable and a real variable.

Parker’s [4] and Scott’s [5] functions which are identical are “smooth curves,” satisfy both (A) and (B) but can
be generalized further.

Both take
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It seems, however, that a lot is lost in taking only the real part of
N — (1N
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Clearly this complex function itself (we will call it £, ) satisfies (A), and also (B) for any complex number x. Also

as the real part of £, satisfies (B) so does the imaginary part and any linear combination of these.
If we let
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for x real, then F;(x) +aF »(x) satisfies (A) and (B) for each real number a.
Scott gives a number of identities concerning Fy(x) and also concerning the corresponding Lucas function which
we will call
Li(x) = Re(Ly) = Re\*+(=1)*"\") = XX + N\ cos 7x .

Of course /(Lx) = —F(x)\/5.
We now list some easily derivable properties of F2(x) some of which relate it to F;(x):
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: . (nl2)-1pn
Filx) = 22X 4 Fp(x) cotmx, Fa(nx) = S0ATX J F2(x)
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Another possible generalization of £, for x = n is|F,| , which we will call G{(x).
Thus

Gilx) = |Fyp| = VP + Falx) = —L_ /A% — 7 cos mx # A%
160 = 15| NG

Another such function is
Gylx) = JF3(x)— F(x) = - VA2X — 2 cos mx + N2 cos 271X .
V(3)

Clearly
kGi(x)+(1—-k)Go(x) = F,
when x = n for all real £.
The following are some properties of these functions:

G2(x+1)=GI(x) = GZ(x+ %) - 2/5sin mx +4/5 cos mx
612(2)() = 56;’()(} +4 cos 7TX612(X)
G2(x) = (1/5)(L1(2x) - 2 cos mx)
GZix) - G2(x) = 2F2(x).
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