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1. INTRODUCTION

Put
(1.1) ok = A )
i (1-x)"*
It is well known (see for example [1], [2, Ch. 2] that, forn > 7, A,,(x) is a polynomial of degree n:
n

(1.2) Anlx) = 3 Anex®;

k=1
the coefficients A,, , are called Eulerian numbers. They are positive integers that satisfy the recurrence
(1.3) Aptik = (n—k +2)An, k-1 + kA k
and the symmetry relation
(1.4) Ak = Ann-k+t (1 <k <n)
There is also the explicit formula

k
(1.5) Ange = 3 (=DI(" ) tk=j)" (1 <n < k.
=0
Consider next
hnd n
(1.6) > (/i/—kz—"L—”) Xk = _Gnld)_ (n>0).
5=0 (71— X}2n+1

We shall show that, forn > 7, G,,(x/ is a polynomial of degree 2n — 1.

2n-1
(1.7) Gulx) = 3 Gupx®.

k=0

The G, 1, are positive integers that satisfy the recurrence
(1.8) Gu+1,k = %k(k +1)Gpp — k(2n — k +2)G jp—1 + %(2n —k+2)(2n —k +3)Gp 12 (1 <k<2n+1)
and the symmetry relation

(1.9) Gk = Guon-k (1<k<2n-1).
There is also the explicit formula
k ) , ) n

(1.10) e e G [ e N T B

=0

The definitions (1.1) and (1.6) suggest the following generalization. Let p > 7 and put
- b 60K
(1.11) 2 Tt (n >0,
k=0 P (7 _X)pn+1

where

138
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(1.12) Thp = (*7271)
We shall show that Gﬁp)(x} is a polynomial of degree pn —p + 1.
pn-p+1
(1.13) 6P)x) = kz folix‘k n=>1),
=1
where the "‘ff’zz are positive integers that satisfy the recurrence
m
(p) _ k+p—1 —k+1
(1.14) Gne-lm_ ; ( mp-1 )(pnm—k )Gr(zl,’lg (1 <m <pn+7},
k>m-p
and the symmetry relation ®) - glo)
(1.15) G‘n{’k I,)pn—p—k+2 (1 <k <pn-p-k+1).
There is also the explicit formula
(1.16) (,‘(P)—Z (1) Pn+1)rZ]p (1<k<pn-p+1)
7=0

with Ty, ,, defined by (1.12).
Clearly
6(Vix) = Autx,  6P(x) = Gulx).

The Eulerian numbers have the followmg combinatorial interpretation. PutZ, = {7, 2, -, n},and letm=(ay, az,
-, @,/ denote a permutation of Z,,. A rise of is a pair of consecutive elements a;, a;1+7 such thata; < a;+1; in addi-
tion a conventional rise to the left of a, is included. Then [6, Ch. 8] A, £, is equal to the number of permutations of
Z,, with exactly k rises.

To get a combinatorial interpretation of GY(,P) we recall the statement of the Simon Newcomb problem. Consider
sequences g = |(a1, az, -, aN)‘of length V with a; € Z,,. For 1 <i <n, let/ occur in o exactly e; times; the ordered
setles, ez, 8,) is called the specification of 0. A rise is a pair of consecutive elements a;, a;+ such that a; < aj+1;
a fall is a pair a;, a;+7 such that a; > a;+1; a leve/ is a pair a;, a;+¢ such that a; = ;7. A conventional rise to the left
of a; is counted, also a conventional fall to the right of ap. Let o have r rises, s falls and ¢ levels, so thatr +s + ¢ =
N + 1. The Simon Newcomb problem [5, IV, Ch. 4], [6, Ch. 8] asks for the number of sequences from Z,, of length
N, specification [ey, ey, -+, e,/ and having exactly r rises. Let Aleq, e2, -, e,r/ denote this number. Dillon and
Roselle [4] have proved that Afey, -, e, |r) is an extended Eulerian number (2] defined in the following way. Put

oo

N
—————7 -\ _ -sm _ 7)-N * N-r
§ls) =\~ ; m=\—1) ;A (m,rIN"T,
m=1 r=1
where {(s) is the Riemann zeta-function and
m :pj’i_pgz_,.psn’ N = ey +ez+...+en;
then
Ales,ep, -, ey |r) = A*m,r),
Moreover
e;+r—j—1
(1.17) Aleg, ez, -, e,lr) = Z (—1)] (N+1) n ( i N )

i=1
A refined version of the Simon Newcomb problem asks for the number of sequences from 2y of length N, specifi-

cation feq, e, -, e,/ and with rrisesand s falls, Let Afeq, -,

(1.18) ) S, Aleg, -, e, |r,s}z§1 ZZ”XTVS = xy 1
P = n
€1, en=0 rhs<N+ y 111 4+0c-1)z) -x TL(T1#1y - 1)z;)
i=1 =1

(74— 1)z;) - | fi L(1+0x~1)z;)

However explicit formulas were not obtained for Afe;, -, .1 r.s).
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Returning to Gy(lp) , we shall show that

(p) =
(1.19) 6P, = Alp, -, plk)
Thus (1.17) gives "
k
(r) _ yifpn 1 +h—j—1\"
(1.20) G¥) = Zo (- (en (TR I
i= ]
in agreement with (1.16).
2. THECASEp =2
it follows from {1.6) that
2n+1 o = 2n+1
_ i (2m 1Y, klk +IN" & _ k nif2n+ iy (k= jk=j+ 1)\
G (x) er(j)xf}:(“—f)X_Zx_zj(v(].)(—*L—/——z ).
=0 k=0 k=0 =0
Hence, by (1.7), i<k
2n+1
_ _yif2n+ 1\ (k= ik =i+ T\"
(2.1) Gup = g A )(——L——L—Z )
i<t
Since the (2n + 1) difference of a polynomial of degree <2n must vanish identically, we have
(2.2) Gu =0 [k >20+1),
Let k <Zn. Then
T iy k= i)k = [+ 1)\ Bt i (am e (k= k= + 1)V
- - " - - - - " - -
(23 0= Y, (-ni(20)( k=l ) = Gup r X i () (el 2 1))
7=0 j=k+1
T i et [ (ki 20— 1kt —20)\"
= "+ /= — /-
‘Gn,k‘za (_”]<2n——j+1)( 7 )
i=
2nk i (20 +1\ ((2n—k—j)(2n — k—j+1)\"
- n—k— —k— -
= Gup— ]E} (—7)]< n]. )( / 7 L ) = Gn,k"Gn,Zk—k .
Therefore
(2.4) Guk = G onk (1T<k<on-1).
Note also that, by (2.3),
(2.5) Guon = 0.

Since by (2.4)
Gn,Zn—1 = Gn,l =1,
it is clear that G, (x/ is of degree 2n — 1.
in the next place, by (1.7),
2 Gu+1lx) _ X d—Z{ xGp(x) } _ XZG;:(X) +2xG;,(x)

(1 _X)2n+3 dXZ (1 _X)Z.’n+1

2n,
i20ome1) X G (x) +xG, (x)
(1 _X)2n+1 (1 _X)Zn+2

flon+1)ion+2) 2 Gl
Hence (1-x)2""
(2.6) 26,11 (x) = (1-x)2(x2GJ(x) + 2xG},(x)) + 330+ 1)(1- x)(x2 G}y (x) +xG. (x)) +(2n + 1)(2n +2)x 26,1 (x) .
Comparing coefficients of xk, we get, after simplification,
(2.7) Gyag,p = Joklh +1)Gy 1 - k(20 = k +2)Gyy g + (20 -k +2)(2n -k +3)Gp 2 (1 < k < 2n—1).
For computation of the G, (x/ it may be preferable to use (2.6) in the form

(2.8) 26G,,+41x) = (1 - x}zx(xGn (X)) +2(2n + 101 = x)x(xG,,(x)) + (2n + 1)(2n +2)XZG,, (x) .
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The following values were computed using (2.8):
Golx) = 1, Gilx) = x
(2.9) Gy(x) = x +4x? +X3
G3(x) = x +20x° +48x° +20x +X5
Galx) = x +72x% +603x7 + 1168x* +603x° + 72x6 +x 7
Note that, by (2.1),
G2 =3"=(2n+1), Gp3 = 6"—(2n+1)-3"+n(2n + 1)

Gug = 10" = (20 +1)-6" +n(2n +1):3" ~ L ntan? — 1)

and so on.
By means of (2.7) we can evaluate G,,(7). Note first that (2.7) holds for 1 < k <2Zn + 1. Thus, summing over &, we
get 2n-1 2n 2n+1
Gur1(1) = 3 1k(k +1)Gpp— 3 k(20 =k +2)Gy g+ 32 15020 —k+3)(20 — k +3)Gy 2
k=1 k=2 k=3
2n-1 2n-~1
= 3 {Bklk+3)—(k+ )20 — k+1)+ %20 — k)20 =k +1)}Gppp = 3 (n+1)(2n +1)Gyyp
k=l k=1
so that
(2.10) Gut1(1) = (n+1)(2n +1)G,(1).
It follows that
(2.11) G, (1) = 27"2n)! (n >0 .
In particular

Gy(1) =1, Gp(1) =6 Gs(1) =90, G4(1) = 2520,
in agreement with (2.9),
3. THE GENERAL CASE
It follows from

(p) hod
(3.1) ——G"—(X)— =y TZ xk (p=1n=0,
(1—x)P"*1 o 7P
that )
pn+
+1 +1
6P)x) = zo (=17 (PP 1) X }: Z (-
i
Since k+]<k1
- P
(3.2) Tep ( p )

isa polynomial of degree p in k and the (pn + 7)th difference of a polynomial of degree <pn vanishes identically, we
have

Pt +1
. jipnrhyrn =,
(3.3) g(ﬁ( )k]p 0.
Thus, forpn-p +1 <k <pn, !
k ) ‘i pn+l ‘1\von
n n "N
(3.4) 2 (I (T = > (7)J(P Teip:
j=0 j=k+1

Since, forpn —p+ 1<k <pn, k<p<p+1, wehave —p < k —j <0, so that Tk_j,p=0 (k+1<j<pn+1). That
is, every term in the right member of (3.4) is equal to zero. Hence (3.3) gives

k
(3.5) > (-7)J(P”.+1)rg_jp =0  (pn-p+1<k < pn)
j=0
It follows that G(P)(x} is of degree <pn —p + 1:
pn-p+1
(3.6) 6P =y 6Bl s 1),

k=0
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where
(3.7) 6P/ - Z ()i T (1 <k <pn-p+i).
0
By (3.3) and (3.7), d
) - +1 - 1
— " = i + (A

(3.8) Gn},?k = Z (- 7)](1’ )Tk—j, (—1)P Z (- 7/](1’71] )Tk"‘] -pn-1,p °

j=k+1 j=0
For m > 0, we have (=) 4 1) o + 1) _

= (=m)(=m - =1 _ =

T—m,p P, 2 (- 7}?( ) = (“1)prm—p+1,p .

Substituting in (3.8), we get

(p) = [_q)pn jf{pn+1 nr
6F) = (1) z{;)(n(f’ )=UPT i penp
= i
This evidently proves the symmetry relation

(r) = g(r) _
(3.9) Gn,k npn hpt2 (1<k <pn—p+1).
Forp =1, (3.9) reduces to (1.4); for p =2, it reduces to (1.9).

In the next place, it follows from (3.1) and (3.2) that

]pn+1 "
Z (=1) ( j >T(pn k-p+2)-jp"

G®) 6(P)(x) P ~
p! g _Gitald | x 47 p-1 __ﬂ_X_} = x (p) _dry (xP~ 1(;(10)()()) i ((1=x)P1)
( X}p(n+1)+1 pr (7—X}p"+1 ] 0 pr— pr
3 (B)fon + 1)1 — P! T etg0)
=X Mpn +1)i(1 —x) P70 —— (p-15(P)1y)).
- j=20 ] j P (x PAx))
(pn +1); = (pn+1)(pn +2) - (pn +j) .
We have therefore
P
(3.10) pI6(E, ) = x 3 (P)on+ 11 -7 L2 (r-1(Pp).

= dxP
Substituting from (3.6) in (3.10), we get

pn+l P
pLY GF) x™=x Z( Pfon +1);(1- x)P4. a3’ f z G(p)xk+P t=x () ton+1); Z (1)°(P77)x¢
m=1 dxPJ 7=0 s=0
pn-p +1 .
(3.11) . Z G+l px T = ST x™ 3 (=1 (BY(P Yoo + 1)tk +i)p 6B
k+jts=m
pn+1 m .
=Y MY 6B T —0f(B) (P len # ik il
m=1 k=1 ’ jts=m-k ]
k=m-p
The sum on the extreme right is equal to J
m-k
s pllpn + Hl(k *flpj L ymkej p!lpn +1);i(k +p = 1)!
(312 ) f‘: (1) jlslp —j—s)! Z (=1) jim — k—j)ik +p —m)ilk +j—1)!
jts=m-k
= (gymk pllk+p = 1)! ): & (~m + k)(pn + 1);

(k — 1){{m — k)!(k +p — m)! /I(k}

By Vandermonde’s theorem, the sum on the right is equal to
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tk=pn = Vet _(gymek _fon = k+ Dllk = 1)1
(k) -t (pn —m+1)H{m—1)I"

Hence, by (3.11) and (3.12),

k+p— _
(3.13) Gflfi)lm= kz—:l( ;{11)(1’” 16_21)6(1’) (1<m<pn+i).
k>m-p ]
Summing over m, we get

() pn~p+1 ) k+p .+ 4 b
— —k+
Grﬁd(” Z G(p Zk(k+; m)<pnm——k)'
m=

By Vandermonde's theorem, the inner sum is equal to

(")
so that
(3.14) G(P) (1) = (P” +P>5(P)(1)
Since G(p)(x) = x, it follows at once from (3 14) that
(3.15) GP(1) = (p1) " pn)! .

By (3.10) we have

p .
p!GP)x) =XJZ( )0 + 1)1 = x5

so that
)4 L ,
(3.16) 6Px) = x > (2)( 7)1 =P
f=
The sum on the right is equal to
p .. P ) P p-j . "
M I SE A CAULED M (A DR ARl G CE)
=0 s=0 k=0 =0

The inner sum, by Vandermonde's theorem or by finite differences, is equal to (z ). Therefore
p 2
- k
(3.17) 601 = x kz_o (2) Xk

An explicit formula for Ggp)(x) can be ohtained but is a good deal more complicated than (3.17). We have, by
(3.10) and (3.17),

p i 2 p p-j )
pIGP ) = x 3 ()= 0P dp’,{ 3 (%) xk+p}= XY @1 (B3 1 (P
s=0

=0 dxP =0

) ; r - 2(k+p)!
-2 (’Z) Z: :j))/’ L > x™ Z (-7)%;))(?;!)(}16’) T ),(2P+7,
The inner sum is equal to m=0 k+]+$:
p! (k+p)! _ 2(p\ (k+p)! tiey(2p + 1)
) D /)/< ) (k+%/(2/’+7}f‘ = (B)) Z(I) I(; )(k+7)

ktj+s=m k+t=m

2 (k- 2p) 2 _
- T () ()t G e T (R) () et okt

k+t=m k+t=m
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Therefore
3 GO« X om BN b \(ktp)liZo— k)
(3.18) Pix) = x ZOX kzo(k) (m~k)p/m/(zp_m;/ _
m= =

4, COMBINATORIAL INTERPRETATION

As in the Introduction, putZ, = {7, 2, -, n} and consider sequences 0= (a7, az, -, anJ, where the a; € Z,, and
the element j occurs e; times in 0, 7 <j <n. Arise in 0 is a pair a;, a;+1 such thata; <a;+1, also a conventional rise
to the left of a; is counted. The ordered set of nonnegative integers /es, g2, -, &,/ iscalled thesignature of o.
CleariyN = e; +es + - +¢, .

Let

A/E1, €2, -, en|r)

denote the number of sequences o of specification /ey, e2, -, e, |r/ and having r rises. In particular, fore; =3 =
...:gn =p, we put

(4.1) Aln,p,r) = Alp,p, -, p|r).
The following lemma will be used, ‘—x—’

Lemma. Forn > 1, we have
r

= pn—j+1\[p+j—1 :
(4.2) Aln+1,p,r) Z; < .y >< i >A(n,p,/) (1 <r<pn+l).
j=
j=r-p
It is easy to see that the number of rises in sequences enumerated by Afn + 1, p, r) is indeed not greater than
pn + 1.

To prove (4.2), let o denote a typical sequence from z,, of specification /p, p, -, p/ with j rises. The additional p
elementsn + 7 are partitioned into k£ nonvacuous subsets of cardinality 77, f2, -+, f, = 0 so that
(4.3) fr+fp+tfy =p, f; > 0.
Now when f elements 7 + 7 are inserted in a rise of o it is evident that the total number of rises is unchanged, that is,
/- /. On the other hand, if they are inserted in a nonrise (that is, a fall or level) then the number of rises is increased
by one: j —j + 7. Assume that the additional p elements have been inserted in a rises and & nonrises. Thus we have
j+b=ra+h=k, sothat

a=k+j-r, b =r—j.

The number of solutions 74, 2, -, f, of (4.3), for fixed k, is equal to (I]: - 5) The a rises of o are chosen in

(ﬁ) - (k+§—r> :(rlk)

ways; the & nonrises are chosen in .
pn~f+1> =<zm~j+1

b r—j
ways.

It follows that

j4 . )
Atn+1,p,1) = A p i) 3 (RZ1)( L )67
The inner sum is equal to / k=1

. -1 . . .
("I E () ) - (I ),

by Vandermonde’s theorem. Therefore
r

Aln+1,p,1) = L; (pr NPT ) Al i)
=
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This completes the proof of (4.2). The proof may be compared with the proof of the more general recurrence (2.9)
forAfeq, -, e,|r, s) in [3].
It remains to compare (4.2) with (3.13). We rewrite (3.13) in slightly different notation to facilitate the comparison:
r

“a) 6k, = T (A (P78,

Since (o) (
An{)1 = an,)1) =17 (” = 7, 2, 3, ..‘),

it follows from (4.2) and (4.4) that
(4.5) Gr(;pr) = Afn,p,r).

To sum up, we state the following
Theorem. The coefficient Gr(zplg defined by

) - LT o)k
p =
G (x) an’kx
k=1
is equal to A(n, p, k), the number of sequences o = (a4, a3, -, apn) from Z,,, of specification /p, p, ---, p/ and hav-
ing exactly & rises.
As an immediate corollary we have

pn-p+1
(4.6) 6y = kz_;j 62) = (o)™ (pn)1

Clearly Ggp)(ll is equal to the total number of sequences of length pn and specification /p, p, -, p/, which, by a
familiar combinatorial result, is equal to (p/)-"(pn)! The previous procf (4.6) given in § 3 is of an entirely different
nature.

5. RELATION OF GE(x) TO A, (x)

The polynomial Gg’) can be expressed in terms of the A, (x). For simplicity we take p =2 and, asin § 2, write
Gy(x) in place of G(2)(x).
By (1.6) and (1.1) we have

oo oo n " oo n
; ; Apilx)
o Guld) = S (k(k+1))x* = ok (;l)knﬁ - Z(]ﬂ) S kMixk - 3 (7) n+ln(:(7'+1 )
(1-x)2*1 k=0 k=0 j=0 =0 " k=0 =0\ (1-x)
so that
n
(5.1) 2"Gutx) = 3 (7)1 = 5T Asit),
j=0
The right-hand side of (5.1) is equal to
n n-f . n+j L 2n n n-}-j . .
n sin — S m m- n n —
> <]>Z (—7}( . J)x 3 Anex® = 3 x™ 3 X (-1) (].)(n_]k)An,Lj]k .
7=0 s=0 k=1 m=1 =0 k=1
k<m
Since the left-hand side of (5.1) is equal to
2n-1
2" 3 Gpymx™,
m=1
it follows that
m " n-m+k
- / —9
(5.2) 2"Gpm = k21 (—1)™ Eg (N Zh) Anrie (1 <m <20-1)
= =
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and
2n k-n )

(5.3) 0= 052 (D)gnh)Ansih
k=n j=0

In view of the combinatorial interpretation of A, 3 and G,, ,,,, (5.2) implies a combinatorial result; however the
result in guestion is too complicated to be of much interest.
For p = 3, consider

670 S k2 - 1)k - Z (1" (% )E KBk = 3 gy il
(1-x)""1 5 j=0 k=0 i=0 Pt — et
Thus we have

6"x

(5.4) 6"x6Vix) = > (=1 ()1 =0/ 2l
j=0
The right-hand side of (5.4) is equal to
2n-2j n+2j n

Z ) 3 () z Ansaint = z 3 ) S ) A

k=1
lt follows that

n+2

(5.5) 5"6(%) 2(—1/”‘] ): (~1)m k(2 =2 A ik

n,m~1
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[Continued from page 129.]
Recalling [2, p. 137] that

n
G+1) Z Kkl = Bj+1(”+7}—3j+1,

k=1
where Bj(x) are Bernoulli polynomials with B; (0) = ;, the Bernoulli numbers, we obtain from (2.3) withx =7, 8 =
1, and C}, = k the inequality
(2.4) Bopln +1)=Bap < (Bpln+1)—By)2  (n=1,2 ).
Forp=2k+1,k=1,2, -, Byp+1 =0, and so (2.4) gives the inequality
(2.5) Bap+2(n+1)—Bypip < B 2k+1 n+1) (nk =12 ).

3. ANINEQUALITY FOR INTEGER SEQUENCES
Noting that U}, = £ satisfies the difference equation

) Ur+2 = 2Up+1 — Up
[Continued on page 151.]



