ENUMERATION OF PERMUTATIONS BY SEQUENCES
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SECTION 1

André [2] discussed the enumeration of permutations by number of sequences;
his results are reproduced in Netto [5, pp. 105-112]. Let P(n, s) denote the
number of permutations of Z,=...1,2,...,7n...with s ascending or descending
sequences. For example, the permutation 24315 has the ascending sequences
24, 15 and the descending sequence 431; the permutation 613254 has the ascend-
ing sequences 13, 25 and the descending sequences 61, 32, 54. The total num—
ber of sequences is five. Generally, a permutation of Z, has at most n - 1
sequences; such a permutation is called an up-down or down-up permutation
according as it begins with an ascending or a descending sequence. Clearly,
in this case all the sequences are of length two.

It is convenient to put

P(O, S) = 60,8’ P(l, S) = 60,8 . (l.l)
André proved that P(n, s) satisfies the recurrence
P(n+1, 8) = sP(n, s) + 2P(n, s~-1)+(n-s+1)Pn, s-2) (n>2). (1.2)

With the convention P(1, s) = 60,3’ (1.2) holds for n > 1.

N8| o 1 2 3 4 5
1 1
2 2
P(n, s): 3 2 4
4 2 12 10
5 2 28 | 58| 32
6 2 60 | 236 | 300 | 122

Let A(n) denote the number of up-down and B(n) the number of down up per-
mutations of Z,. Then
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260 ENUMERATION OF PERMUTATIONS BY SEQUENCES [JUNE

A(n) = B(n) = %P(n, n-1) (> 2). (1.3)

Moreover, André [1] showed that

® n
:E:A(n)57-= sec 2 + tan z, (1.4)
n=0 :

with A4(0) = A(1) = 1. Thus, a generating function for P(n, m-1) is known;
also, (1.4) yields an explicit formula for A(n) and, therefore, also for
P(n, n-1).

A generating function for P(n, s) has apparently not been found. We shall
show that

3

n 2
_ 2\-n/2 Z_n_ n-8 _ 1 -2 1 - xZ + sin 3
E (1 - x%) n!sioP(n-fl, 8)x 1+ o < % - cos = . (1.5)

n=0

We have been unable to find an explicit formula for P(n, 8). However, it
follows from (1.2) and (1.3) that

P(n, n - 2)
P(n, n - 3)

2A(n + 1) - 4A(n) (n >2),
An + 2) - 4A(n + 1) - (n - 5)4n) (n > 3),

and so on. Generally, we have

P(n, n-8) = ) fo; MA(+s-7)  (n2 s> 0),
=1

where the f;j(n) are polynomials in n, fz;(n) = 1. However, the f;j(n) are
not evaluated.

If we let P(n, r, 8) denote the number of permutations of Z, with r as-
cending and s descending sequences, it is easy to show that

P(n, r, r) = P(n, 2r)
P(n, », r - 1) = P(n, r - 1, r) =

N =

P(n, 2r - 1).

Moreover, P(n, r, s) = 0 unless » = 8, s + 1, or s — 1. Also, permutations
can be classified further according as they begin or end with either an
ascending or descending sequence. This suggests the four enumerants

Pyy(n, r, 8), Py_(n, r, s), P.(n,»r,s8), P._(n,r, s);

for precise definitions, see §5 below.

It is also of some interest to adapt another point of view. We define
P(n, r, s) as the number of permutations T of Z, with » ascending and s de-
scending sequences in which we count an additional ascending sequence if T
begins with a descending sequence, also an additional descending sequence if
T ends with an ascending sequence. For the relation of P(n, r, s) to the
other enumerants and a generating function, see §§5 and 6.



19781 ENUMERATION OF PERMUTATIONS BY SEQUENCES 261

SECTION 2
Put
n-1
B, (x) = ZP(n, s)x?® (n>1) (2.1
8=0
and
= n
6@, 2) = ) Py @, (2.2)
n=0
By (1.2) and (2.1),
n+1l
Bp(@ = ) P(n+2, 8)z°
8=0
n+1
=§:{ﬂnn+l,s)+2Pm+1,s—l)+(n—s+2ﬂ%n+l,s—2ﬁxs
8=0

]

TPl (£) + 2Py (2) + ) (n-2)P(n+1, &)z
8=0

xPl (@) = 2P, 1 (®) + nx’Pyy1(x) - x°P ().

Hence
P,io(@) = (nx? + 2x)P, 1 (x) - (x® - )P, (%) n>0). (2.3)

It now follows from (2.2) that

8 o n © gn
o = Y B @i = Y et + B @ - @ - @p, @
n=0 : n=0 *
- 2,0G(x, ) _ .3 _ 409G, 2)
= 2xG(x, 2) + x°z N (x x) . .
Thus
@ - o2 B 2y 12 2 - g, (2.4)
The system
dr  _ dz _ dg 2.5)
x} -z —x2z + 1 226
has the integrals
zVxz? - 1 + arcsin l3 g:——-I-——:LG. (2.6)
x> x -1

It follows that
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x+ iG(x, z) = ¢(2Vx2 - 1 + arcsin %), (2.7)

x£x -

for some ¢(u).
It is convenient to replace & by x~

1+ Lo, xz) = Cb(z\/l - z? + arcsin x) (2.8)

l1-x

! and z by 2z, so that (2.7) becomes

For 2 = 0, (2.8) reduces to

1+
1 -x

G(x™, 0) = ¢(arcsin ).

Since G(x~!, 0) = 1, it follows at once that

_ 1+ sin u
0@ = T —in u” (2.9)
Hence (2.8) becomes, on replacing z by z/¥1 - xz2,
1+ x<;( -1 3 ) _ 1+ sin(z + arcsin x)
_ s s - .
1-x A - 22 1 - sin(z + arcsin x)
It can be verified that the right member is equal to
2 . 2
1l - x°+ sin 2
X - cos 2 ’
Therefore, we have
Bz, z) = L= (/= %% + sin z\° (2.10)
’ 1+ x x - cos B :

where

© 7
- X3 2.-n/2 3" n-g
H(x, 2) = G(m V—=—_1 = z:(l - x%) ‘TE :P(n+l, s)z"~ 8  (2.11)
/1 - x? n=0 n.8=0

SECTION 3
For * = 0, (2.10) reduces to
= n n . 2
:E:P(n-kl, n)%T =+ sinz) _ 2 sec? 2+ 2 sec z tan z - 1. (3.1)
n=0 ' cos? z
By (1.4),
© P )
EE:A(n + l)ﬁT = sec 2 tan 2 + sec” 2 (3.2)
n=0 )

while, by (1.3),

= n = n = n
Zop(n +1, i - 1+221A(n +DE = 12 A+ DEL
n= n= n=0

Hence (3.1) and (3.2) are in agreement.
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We may rewrite (2.10) in the form

i_z_’iip(n + 1, e)xtf = 1-2x(vV1- 2%+ sin(z/1 - z2) 2

(3.3)
1
ey ey L+ x - cos(zV1 - x?)
nnnnn
It is clear from the definition that
n
NP+ 1,8 = (n+ 1) (3.4)
g=0
Hence, for £ = 1, the left-hand side of (3.3) should reduce to
Y+ 1zt = (1 - 2.
n=0
As for the right-hand side of (3.3), we have
1 - xz)% + 2(1 - xz2)% - —l—z (1 - xz)% + o ’
1-x 31
L+ ) o1+ 222 - 22) - Lav@ - 22)2 + ...
2! 41
1+z—§1'—z3(1 —x2) + e f?
= T s
1-7!—2 aA+ax) + .-
which reduces to
2
1+ 2z = (1 - 2)2. (3.5)
1 - 22
Note also that for x = -1, we get (1 + 2)2. It therefore follows from
(3.3) that
n
SRR+ 1,8 =0 (> 2). (3.6)
8=0
This is a known result [2], [5].
Combining (3.6) with (3.4) gives
P(n + 1, 28) = E P(n+1, 28 +1) = %{n + 1)! (3.7)

28<n 28<n

If we take s = n in (1.2) we get P(n + 1, n) = 2P(n, n - 1) + P(n, n - 2).
Thus it follows from (1.3) that

P(n, n—-2) =24(n + 1) - 44(n) (n > 2). (3.8)

Taking s = n - 1, we get
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Pn+1,n-1) = (n - 1)P(n, n - 1) + 2P(n, n - 2) + 2P(n, n - 3),
which gives
P(n, n-3) =A(n+2) - bAn + 1) - (n - 5)4(n) (n > 3). (3.9)
Next, taking ¢ = n - 2, we get
P(n, n - 4)=An+ 3)-64(n + 2) - 3n - 16)A(n + 1) + (6n - 18)A(n) (3.10)
(n > 4).
Thus it appears that
P(n, n - 8) =§:f8j mAMmn + s - J) (n>s>0), (3.11)
Jj=1

where the f,; (n) are polynomials in n, fy, (n) = 1. 1Indeed, using (1.2), we
find that

8fos1,; M) =Foj (n+1) = (n-s+Df_1; ,m -2, ; ;).  (3.12)

However, it is not evident how to evaluate the fsﬂi(”) from this recurrence.
Returning to (2.10), if we replace x by cos &, we get

. . 2
Z (z/sun x)" ZP(” +1, 8)cos" x = 1 - cos xfsin x + sin z) )

1 + cos x\cos £ - cos 2

Hence

cot %x (—ZM—)—ZP(TL + 1, 8)cos” *x = cot? %(x - 2). (3.13)

n=

Since the right-hand side of (3.13) is symmetric in x, 2, it follows that

Z(z/sm x)" ZP(” +1, )deos" ®zx (3.14)

= cot = Z(x/Sln 2)" ZP(n + 1, &)cos™ "% 2.

It would be interesting to know whether there is some combinatorial result
equivalent to (3.14).

SECTION 5

As a refinement of P(n, s) we define P(n, r, s8) as the number of permuta-
tions of Z, with r ascending and s descending sequences. It is evident that
P(n, r, s) = 0 unless » = g, s + 1, or s - 1. Moreover, since a permutation
can be read from left to right or right to left, we have

Pn, r, » - 1) = P(n, »r - 1, r).
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It accordingly follows that
P(n, r, r) = P(n, 2r)
1 (5.1)
P(n, r, »r - 1) = P(n, » - 1, r) =-§Z%n, 2r)
Now divide the permutations of Z into four nonoverlapping classes accord-
ing as they begin or end with ascending or descending sequence. We denote

the classes by C Cy_, C_y, C__. The permutations in these classes have
the appearance

AR AARAE WA WAL 62

respectively. Denote the corresponding enumerants by

++9

pP,,(n, », 8), P, (n, r, s), P_,(n, r,s), P__(n,r,s.

Then we have the following equalities:

P__(n, s, r) (5.3)

P,.(n, v, s)

and

I

P, (n, r, 8) P_,(n, s, 7).

These relations follow on applying the transformation

b;=n-a; +1 (2 =1, 2, ..., n)
to any permutation (a,;, a,, ..., a,) of Zn. Alternatively (5.3) follows on
first reading a permutation of C,, from left to right and then from right to

left.
In the next place, it is evident from (5.2) that » =s + 1 in C,,, r = 8

in C,, or C__, » =85 - 1 din C__. Thus
P, (n, r, s) =P_,(n, r, s) =0 (r +# 8), (5.5)
P++(7’l, r, 3) =0 (l" # s + 1), (5.6)

]
o

P _(n, r, 8) (r$s-1). (5.7)

Hence

P, (n, r, r) =P_,(n, r, r) =-%E%n, 2r)
(5.8)
1

Piv(n, 7, r - 1)

1]
|
i
1

~~
N
S
|

. ?) = 2P, 2r - 1),

In view of (5.8), generating functions for the four enumerants are implied
by (2.10).
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Another point of view is of some interest. Given a permutation (a,;, a,,

., an) of Z,, we adjoin virtual elements 0, 0' : (0, a;, @y, ..., Qy, 0").
If a; > a,, then Oa, is counted as an additional ascending sequence; if how-
ever a, < a,, the number of ascending sequences is unchanged. Similarly, if
apn-1< ay, then a,0' is counted as an additional descending sequence; if
dy-1 > ay,, the number of descending sequences is unchanged. Also, let
P(n, r, s) denote the number of permutations of Z, with » ascending and s
descending sequences using these conventions. It follows at once that

P(n, r, 8) =0 (r # 8). (5.9)
Moreover we have, by (5.8)
P(n, v, ¥) = Py_(n, v, ») + P_,(n, »r - 1, » = 1) (5.10)
+ Pyy(n, r,r-1) + P__(n, » -1, r).

To illustrate (5.10), take n = 4, r» = 2. The permutations are:

1 3 2 4 2 1 4 3
1 4 2 3 31 4 2
Ces $2 3 1 4 C__ 3 2 4 1
8 2 4 1 3 4 1 3 2
3 4 1 2 4 2 3 1
For n = 3, » = 2, the permutations are:
2 1 3
Cos {3 1 2
For n=3,r=1
1 3 2
C*-{z 3 1°
It follows form (5.8) and (5.10) that
P(n, 2r) = P,_(n, v, r) + P_,(n, » - 1, » = 1) + P(n, 2r - 1). (5.11)
We have also
B, (x) = Py (x) + %P (x) + x7 B (x) + x71P; T (x) (5.12)
and
P, (x) = P (x) + P, (x) + Pit(x) + P; (), (5.13)
where

P, (x) =ZP(n, "k, P, (x) =213(n, r, r)en-2T,
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P;Yx)=§:Eu(n,r,rhﬁ'”,
r

P;+Cr)==2:E;+(n, r, r - D" 2771 ete.
r

Note that P, (x) is not the same as the P, (x) of (2.1).
Comparison of (5.13) with (5.12) gives

P,(x) - 21P, () = (1 - 271)2P} (x). (5.14)

SECTION 6

A generating function for P(n, r, ») can be obtained rapidly by using a
known result on the enumeration of permutations by maxima. Given the permu-
tation (a,, a,, ..., a,) of Zn, then a;, 1 < k < n, is a maximum if Ap-1<ay,
ay > ag-31. In addition, q; is a maximum if a; > ay; ayn is a maximum if g, _;<ay.
Let M(n, m) denote the number of permutations of Z with m maxima.

Clearly if a permutation has m maxima in accordance with this definitionm,
then it has exactly m ascending and m descending sequences and conversely.
Thus

P(n, », ¥) = M(n, r). (6.1)

A generating function for M(n, k) is furnished by [3], [4]:

©

2 unUZk
M(n + 2k + 1, + l)m)‘—'— (6.2)
n,k=0
= {cosh Vu? -v? - S — sinh Vu? - v? _2.
Vu? - v?
Making some changes in notation, this becomes
< -n/2 3" . 1 -2
Sa-an™ FE Mn+1, j+z = ~. (6.3)
n=0 .2j<n (V1 -2% cos 3 - x sin 2)
Finally, in view of (6.1), we have
= )2 3" . . 1-z?
-z Z"E P(n+1,j+1,j+1)a = : ~. (6.4)
n=0 To5<n (V1 -x° cos 2z -x sin 2)

If we put

= -nf2 2" Ny - "=
e, 2) =) -2 5p @), B@, 2) =) A-2" 2B @),
n=0 n=0

= n
B (@, 3) =) (1-2)™ Epin @,
n=0
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it follows from (5.14) that
xH(x, ) -~ 2 'H(x, 2) = (1 - 2 Y2 H  (x, 2). (6.5)

Therefore, by (2.10) and (5.14), we get

2 (1 -x)E (z, 2) = 2 (1+x)? a (Vl-—xz + sin z>2 (6.6)
(Vl-—xz cos z - x sin z)z * -cosa

Values of P(n, r, ¢) for n = 2, 3, 4 follow.

s| 0 1 s| 0 1
n=2 0 . 1 n=73 0 . 1
1 1 . 1 1 L
st 0 1 2 sl O 1 2
r r
0 . 1 . 0 . 1 .
n==4h n=>5
1 1 12 5 1 1 28 29
2 . 5 . 2 . 29 32
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