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1. INTRODUCTION

The purpose of this paper is to relate certain matrices with integer en-
tries to convolutions of arithmetic functions.

Let n be a positive integer, let 0, B, and Y be arithmetic functions (com—
plex-valued functions with domain the set of positive integers), and let a[n]
denote the 1 x 7 matrix [a(l) a(2) ... a(n)].

We define the n x n divisor matrix D, = (dy) by dy =1 if 2]j, dy = 0
otherwise. Both D, and its inverse, D;l, are upper triangular matrices. The
arithmetic functions Vi, O, and € are defined by v,(n) = nk for k = 0, 1, 2,

o(n) = z;d, and €(n) =1 if n=1, e(n) = 0 if n > 1. We also consider the
din

divisor function T, the Moebius function i, and Euler's ¢-function. We ob-
serve that

Vorn1D = Tia1s (1)
Vi1 D = Opns 2)
€105 = Vinls (3
\)1[,,]]);1 = $(n]- (4)

These matrix formulas, which can be used to evaluate arithmetic functions as
in [2], are consequences of the following equations which involve the Diri-
chlet convolution, *,.

Vo*pV, = T, an
V kv, = 0, 2"

E#pl = U, € = Ud#pVg, 3"
vkl = ¢, dEpv, = V. 4"

As an illustration, consider matrices Dy and Dgl which appear below.
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Any omitted entry is assumed to be zero. By (2),

[123456]D

[0(1) 0(2) o(3) a(4) a(5) a(6)],

so that 0(6) = dzljd = dzl:\)l(d) (V1%pV,) (6). And by (4),
6 6

[123456]D51

[¢(1) ¢(2) ¢(3) ¢(4) ¢(5) ¢(6)1,

so that ¢(6) =1 -2 -3+ 6 (v, *,1) (6).
These observations lead us to define and illustrate matrix-generated con-
volutions.

2. MATRIX-GENERATED CONVOLUTIONS

Suppose that G = (giJ) is an infinite dimentional (0, 1)-matrix with 9:
1if 2 = 4 and 95 = 0 if © > j, and that the 1's in column #n of G appear in
TOWS 7y, Moy eeey nk (n, <m, < ... <nxp=mn). We say that G generates the
convolution #*, defined by

k
(@#8) () = D d(n)B(ey1_,)> 7= 1, 2, 3,
v=1

Clearly, ®*; is a commutative operation on the set of arithmetic functions.
We denote by G, the n x n submatrix of G = (91 Ywith 1 <72 <n,1<J<mn.
The convolutlons in Examples 1-4 below are deflned and referenced in [3].

Exampfe 1: The matrix D = (d,;), with dy; = 1 if 2|, di; = 0 otherwise,
generates the Dirichlet convolution #%,. D, is the n x n divisor matrix, and
the set {#n,, n,, ..., ny} is the set of positive divisors of #.

Example 2: The unltary convolution is generated by the matrix U = (u;;)
with U = 1if £ £ 4 and z[g and 7 and J/7i are relatively prime, u;; =0
otherwise.

Exampfe 3: The matrix C = (¢;;) defined by c;; =1 if < <j, ¢y =0
otherwise, generates a convolution %, related to the Cauchy product. Since
{nys nps vouy ny}={1, 2, ..., n}, we have

(ax;B) (n) = a()B(n) + a(2)B(n - 1) + --- + a(m)B(D).

Example 4: TFor a fixed prime p, let the matrix L = (Zij) be defined by
li5 =14if £ £ j and p f (J 1), l;; = 0 otherwise. The convolution #; gen-

erated by L is related to the Lucas product. The entries shown in the matrix
L,, for p = 3 are easily determined by the use of a basis representation cri-
terion given in [1].
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1 1111111111111
110110110110 1
100 100100100

1111110001 1
11011000 0 1
10010000 0

I - 11100 00 0
14 11 0 0 0 0 O
(= 3) 1 0 0 0 0 O
111 1 1

110 1

10 0

11

1]

3. A GENERAL MOEBIUS FUNCTION

In view of (3'), we next define a general Moebius function U, by Vox U =
€. It is immediate from G;'G, = I, (the n x n identity matrix) that

if G,'=(F;;) theng;; = u(f) for g =1,2,...,nandn=1,2,3,... (5)

For example, the elements in row one of D! are Hp(1) = (@), w2, ..., u(6)
(in that order). The values of the unitary, Cauchy, and Lucas Moebius func-
tions given in [3] agree with corresponding entries in row one of U,, C,, and
L,, respectively. Property (5) implies E[n]G;1 = Ug[n]» which is a general-
ization of (3).

The following three properties are related to the Moebius function and are
stated for future reference.

a%x,€ = o for all arithmetic functions a. (6)
%; 1s an associative operation on the set of arithmetic functioms. (7
If g,; = 0 then g;; = 0, where G;' = (F;), n=1,2,3, .... (8)

Property (6) is equivalent to
gy =1 forj=1,2,3,.... 6"

For (6') clearly implies (6); and if g,, = 0 for some n, and o is such that
a(n) # 0, then (axge)(n) = 0 # a(n).

Example 5: Let the matrix P = (p;;) be defined by p,; =1 if < < J and 7
and j are of the same parity, p,; = O otherwise. Evidently, (6') and (6) do
not hold here. For example, (Vo#p€)(2) =v,(2)e(2) = 0 # v(2). Although €,
defined by €’(1) = €'(2) = 1, €'(n) = 0 if n > 2, satisfies axpe’= o for all
arithmetic functions o, €’ is not related to matrix multiplication in G;lGn =
I, in the desirable way that € is.

We note that if (6) and (7) hold then we can apply Moebius inversion in
the form o = v *,B iff B = W *,0 [as illustrated in (4')]. It is clear that
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(6) holds and well known that (7) holds for the convolutions in Examples 1-4;
so (8) holds as well, as can be verified by direct computation or by applica-
tion of the following theorem.

Theonem 1: Property (7) implies property (8).

Proof: Assume that (8) is false. Let j be the smallest positive integer
such that for some ¢ we have g,, = 0 and g;; # 0; let this j = n. Consider

the largest value of ¢ such that g;, = 0 and g;, # 0; let this < = ¢. It

follows by the assumptions and GnGn_l = I, that g,, =1, g,, =0, 7, #0,

there is an integer r such that ¢ <»r» <#n and g,, =1, and g,, = 1. Since

re {ny, ..., ng} and 9:» = 1, then a(¥) is a factor in some term of
((oxgB)%,Y)(n) .

But no term of (a*G(B*GY))(n) has a factor a(t) because t ¢ {nl, ey nk}.
Therefore, (7) is false and the proof is complete. B

L. THE MAIN THEOREM

We now define some special functions and matrices leading to the main re-
sult in this paper. Assume that the matrix (G generates the convolution %
and define the arithmetic functions 4 and B by

A@) =D g, (@) and B() = D7, ().
i=1

=1
Then for n =1, 2, 3, ..., we have
O(‘[n]Gn = A[YL] (9)
and
Bs1Gn = Blnl- (10)

Define G, = (s;;) to be the n x n matrix with s;; =1 if Z=n, and J = 74, _,,
v=1,2,...,k, 8;;= 0 otherwise. Note that Gj is a symmetric (0, 1)-matrix
with at most one nonzero entry in any row or column. If M? denotes the trans-
pose of a matrix M, then

(axgB) (n) = oc[ﬂ]G;?(B[n])t (11)
and
(4#GB) (n) = A[n) Gy (Brn1)? - (12)
The matrix Gnt is of special interest and can be characterized as follows.
Column 7, of GnGﬁ equals column #y4;_, of G,, for v = 1,2, ...,k;
the other columns (if any) of G,G. are zero columns. (13)

Although GnG;f is symmetric (for all positive integers ») for the matrices de-
fined in Examples 1-5, GnG,‘f is not symmetric for G, = E, given below.
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1 1 0 0 00 0 0 1
E,=10 1 1f, EJ=10 0 1|, EgES=1|0 1 1
0 0 1 0 1 0 0 1 0
Theorem 2: The matrix GnGﬁ is symmetric for m» = 1, 2, 3, ... if and only
if (axzB) (n) = (4#;B) (n) for all arithmetic functions o and B, and for all
positive integers #.
Proof:
1. Assume that Gnt is symmetric for » = 1,2,3, ... . This and the sym-

metry of G imply that (G,G5)° = G,(G5)*. 1In view of (9), (10), (11),
and (12), we have

(4#:B) () = A[n) Gy (Brn1)*

0 (n]GnGE(Bra1GRY)"

= 0, G5 (@ (Bray)"
a[n]Gf(B[n])t

(0xgB)Y (M), m=1,2,3, ....

2. Assume that there is a positive integer » such that Gnt is not sym-
metric. Then G,Gf # (G.G5)? implies that G,G5(G,Y)Y # G5 and that
(A*%zB) (n) = a[n]Gnt(Gzl)t(B[n])t and (ax;B) (n) are not identically
equal. Therefore, there exist arithmetic functions & and B such that

(A%;B) (n) # (axgB) (n).
This completes the proof of the theorem. @
Next, we give an appiication of this theorem.
Example 6: Since P,PS is symmetric for m = 1, 2, 3, ... for P in Example

5, we can apply Theorem 2 with n = 2t -1 (for t a positive integer), a = v,,
B(2k-1) = k for k=1, 2, ..., t, to obtain the identity

t t
D v, = ) Qk-1)(E-k+1),
k=1 k=1

which can be expressed in the form

t t-1
3= D v (k) + P k(2K+1).
k=1 k=1

5. A GENERAL EULER FUNCTION

Assume that the matrix G generates the convolution #;. In 83, we defined
a general Moebius function Hg and obtained‘a generalization of (3). 1In this
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section, we define a general Euler function ¢, for G such that *; satisfies
(6) and (7), and derive a generalization of (4).
First, we consider the property

GnG;f is symmetric for m = 1, 2, 3, ... (14)
and some preliminary theorems.
Theorem 3: Property (7) implies Property (14).
Proo§: Assume that G,GS = (h;;) is not symmetric.

Case 1: Suppose that column w of G,,G;f is a zero column and that hy, =1
for some q¢ € {1, 2, ..., n}. By (13), gy, = 0 and q € {n,, ..., ny); say q =
Ngs1-t- Then gun, =1 = gpon = gneny and ((axgB)%e7Y) (1) has a term with fac-
tor a(w); but (OL*G(B*GY))(VL) has no term with factor a(w) and (7) is false.

Case 7: Suppose that hy,,,= 0 and #An,n, = 1, where n; and n, belong to
{nl, ey nk}. Then guynyyr-r = Os Inpnper-o = Ls @nd gn,n = 1 = gy, There-
fore, (0#B) (My4+,-,)Y(ns) has a term with factors a(n,) and Y(ns), but
o(ny) (Bx;Y) Mg +1-,) has no term with a y(ng) factor. Again, (7) is false. B

Theonem 4: Property (14) implies Property (8).

P/Looﬁ: Assume that (8) is false and let ¢ and » be defined as in the
proof of Theorem 1. Column t of G,GS is a zero column (since Jen = 0); but
a 1 entry appears in row t of G,GS (because gip =1 =gu,), so that Gnt is
not symmetric. @

We note that (7) implies (8) and (14), and that (14) implies (8); there are
no other implications among the properties (6), (7), (8), and (14) (as will
be shown in §5).

It follows from (9) that A = vy*;a. If G and %; satisfy (6) and (7), then
(by Theorems 3 and 2) we have (ax;B)(n) = (ox;Vy*%;8) (n) for all arithmetic
functions o and B and for n = 1, 2, 3, ... . Therefore, we have

B(n)

(Vo%;B) (1) ;
and
B(n)

1]

(B*;u;) (1) (15)

for all arithmetic functions B and for n =1, 2, 3, ... follows by Moebius
inversion.

Theorem 5: 1If properties (6) and (7) hold for G and #;, then
—g—_nv” = uG(nk-!-l—u)) v = l; 2, ceey k.

Proof: Define the arithmetic functioms B,, v =1, 2, ..., k,by B,(n) =1
if n = n,, By(n) = 0 otherwise. Property (15) implies that

n k
D BT, = 9 BUING (rerr-y) (16)
i=1 v=1
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for all arithmetic functions B and for n = 1, 2, 3, ... . Let

G = %, in (16)
to obtain g, , = He(Mg+1-p)3 this is valid for v =1, 2, ..., k. @

For G and *; which satisfy (6) and (7) we define the general Euler func-
tion ¢, by ¢; = V *,U,. We can now generalize (4).

Theonem 6: 1If G and *; satisfy (6) and (7), then vl[n]G;l = ¢gn]-

Proof: This is a direct comsequence of Theorem 5 and Property (8) (which
follow from (6), (7), and Theorems 3 and 4). B

Other general functions such as T; and 0; can be defined analogously.

6. REMARKS

First, we show that there are no implications among properties (6), (7),
(8), and (14) except (7) implies (8) and (14), and (14) implies (8). 1If Ry
is as shown and R = (r;;) is defined for Z>5and § >5by r;; =141f 2 =g
or 7 =1, r;; = 0 otherwise, then R satisfies (6) but not (7), (8), and (14).
The matrix P defined in

11
1

e
O

Rg = Mg =

= o
=
o oR
"
e
e

Example 5 satisfies (7), (8), and (14) but not (6). A matrix M = (m;;) which
satisfies (8) but not (7) and (14) can be defined for Z>5 and j>5 by my; =1
if ¢ = §, my; =0 otherwise, with My as shown. If K, is as shown and K= (k;;)
is defined for ¢ >10 and J§>10 by k;; = 1 if ¢ = j, k;; = 0 otherwise, then
(14) holds, but (7) is false since, for example,

(V%9 ) %,V,) (10) # (V% (V%)) (10).

1 1 1 1
1 0 0
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Properties (6), (7), (8), and (14) all hold for the matrices (and generated
convolutions) in Examples 1-4 as well as for those defined in our concluding
example.
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A

Example 7: Let F = {1, 2, 3, 5, 8, ...} be the set of positive Fibonacci
numbers. Define F = (fi;) by fi; =1if 2 = J or if 2 < j and 2 €F, jzj =0
otherwise. F can be replaced by any finite or infinite set of positive inte-
gers which includes 1, and properties (6), (7), (8), and (14) will be satis-
fied. If F is replaced by the set of all positive integers, we obtain the
matrix C in Example 3.

et
F
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