STRONG DIVISIBILITY SEQUENCES AND SOME CONJECTURES

CLARK KImberling
University of Evansville, Evansville, IN 47702

1. INTRODUCTION

Which recurrent sequences $\left\{t_{n}: n=0,1, \ldots\right\}$ satisfy the following equation for greatest common divisors:

$$
\begin{equation*}
\left(t_{m}, t_{n}\right)=t_{(m, n)} \quad \text { for all } m, n \geq 1 \tag{1}
\end{equation*}
$$

or the weaker divisibility property:

$$
\begin{equation*}
t_{m} \mid t_{n} \text { whenever } m \mid n ? \tag{2}
\end{equation*}
$$

In case the sequence $\left\{t_{n}\right\}$ is a Zinear recurrent sequence, the question leads directly to an unproven conjecture of Morgan Ward. (See [3] for further discussion of this question.) Nevertheless, certain examples have been studied in detail. If t_{n} is the nth Fibonacci number F_{n}, then (1) holds and continues to hold if t_{n} is generalized to the Fibonacci polynomial $F_{n}(x, z)$, as defined in Hoggatt and Long [2]. Not only does (1) hold for these secondorder linear recurrent sequences, but (1) holds also for certain higher-order linear sequences and certain nonlinear sequences. For example, if $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ are sequences of nonnegative integers, satisfying (1), then for fixed $m \geq 2$ the sequences $\left\{t_{n}^{m}: n=0,1, \ldots\right\}$ and $\left\{t_{s_{n}}: n=0,1, \ldots\right\}$ also satisfy (1). Other examples include Vandermonde sequences, resultant sequences and their divisors, and elliptic divisibility sequences. These are discussed below in Sections 3 and 4, in connection with the main theorem (Theorem 1) of this note.

In the sequel, the term sequence always refers to a sequence t_{0}, t_{1}, t_{2}, ... of integers or polynomials (in some finite number of indeterminates) all of whose coefficients are integers. With this understanding, a sequence is a divisibizity sequence if (2) holds, and a strong divisibility sequence if (1) holds. Here, all divisibilities refer to the arithmetic in the appropriate ring; that is, the ring I of integers if $t_{n} \varepsilon I$ for all n, and the ring $I\left[x_{1}, \ldots, x_{j}\right]$ if the t_{n} are polynomials in the indeterminates x_{1}, \ldots, x_{j} 。

A sequence $\left\{t_{n}\right\}$ in I (or $I\left[x_{1}, \ldots, x_{j}\right]$) is a kth-order $l_{i n e a r ~ r e c u r-~}^{\text {ren }}$ rent sequence if

$$
\begin{equation*}
t_{n+k}=a_{1} t_{n+k-1}+\cdots+a_{k} t_{n} \quad n=0,1, \ldots, \tag{3}
\end{equation*}
$$

where the α_{i} 's and t_{0}, \ldots, t_{n-1} lie in I (or $I\left[x_{1}, \ldots, x_{j}\right]$). A kth-order divisibility sequence is a kth-order linear recurrent sequence satisfying (2), and a kth-order strong divisibility sequence is a kth-order linear recurrent sequence satisfying (1).

2. CYCLOTOMIC QUOTIENTS

For any sequence $\left\{t_{n}\right\}$ we define cyclotomic quotients Q_{1}, Q_{2}, \ldots as follows: for $n \geq 2$, let $P_{1}, P_{2}, \ldots, P_{r}$ be the distinct prime factors of n; let

$$
\Pi_{0}=t_{n}
$$

and for $1 \leq k \leq r$, let

$$
\Pi_{k}=\Pi t_{n / P_{i_{1}} P_{i_{2}}} \ldots P_{i_{k}}
$$

the product extending over all the k indices i_{j} which satisfy the conditions

$$
1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq r .
$$

Let $Q_{1}=1$, and for $n \geq 2$, define

$$
\begin{equation*}
Q=\frac{\Pi_{0} \Pi_{2} \cdots}{\Pi_{1} \Pi_{3} \cdots} . \tag{3}
\end{equation*}
$$

The following lemma is a special case of the inclusion-exclusion principle:
Lemma 1: Let H be a set of τ real numbers. For $i=1,2, \ldots, \tau$, let \mathcal{H}_{i} be the family of subsets of H which consist of i elements. Let

$$
m_{i}=\sum_{A \in \mathcal{H}_{i}} \min A .
$$

Then

$$
m_{1}-m_{2}+m_{3}-\cdots-(-1)^{\tau} m_{\top}=\max H
$$

Proof: We list the elements of H as $h_{1} \leq h_{2} \leq \cdots \leq h_{\tau}=\max H$. Clearly

$$
m_{i}=\binom{\tau-1}{i-1} h_{1}+\binom{\tau-2}{i-1} h_{2}+\cdots+\binom{i-1}{i-1} h_{\tau-i+1}
$$

for $i=1,2$, \ldots, τ, so that

$$
\begin{aligned}
& m_{1}-m_{2}+m_{3}-\cdots-(-1)^{\tau} m_{\tau} \\
& =h_{1} \sum_{i=0}^{\tau-1}(-1)^{i}\binom{\tau-1}{i}+h_{2} \sum_{i=0}^{\tau-2}(-1)^{i}\binom{\tau-2}{i}+\cdots+h_{\tau-1} \sum_{i=0}^{1}(-1)^{i}\binom{1}{i}+h_{\tau} \\
& =h_{\tau} .
\end{aligned}
$$

Theorem 1: Let $\left\{t_{n}: n=0,1, \ldots\right\}$ be a strong divisibility sequence. Then the product $\Pi_{1} \Pi_{3} \ldots$ divides the product $\Pi_{0} \Pi_{2} \ldots$. [That is, the quotients (3) are integers (or polynomials with integer coefficients).]

Proof: Let $n=P_{1}^{f_{1}} \ldots P_{v}^{f_{v}}$, and write $t_{n}=q_{1}^{h_{1}} \ldots q_{\tau}^{h_{\tau}}$. Then

$$
\begin{align*}
& \Pi_{0} \Pi_{2} \Pi_{4} \ldots=t_{n} \Pi t_{n / P_{i_{2}} P_{i_{2}}} \Pi t_{n / P_{i_{1}} P_{i_{2}} P_{i_{3}} P_{i}}, \cdots, \text { and } \tag{4}\\
& \Pi_{1} \Pi_{3} \Pi_{5} \ldots=\Pi t_{n / P_{i}} \Pi t_{n / P_{i_{1}} P_{i_{2}} P_{i_{3}}} \Pi t_{n / P_{i_{1}} P_{i_{2}} P_{i_{3}} P_{i_{6}} P_{i_{5}}} \ldots . \tag{5}
\end{align*}
$$

Now $t_{n / p_{i}}=q_{1}^{h_{i 1}} q_{2}^{h_{i 2}} \ldots q_{\tau}^{h_{i \tau}}$ for $i=1,2, \ldots, \nu$, where

$$
\begin{equation*}
h_{j} \geq h_{i j} \text { for } j=1,2, \ldots, \tau, \text { and } i=1,2, \ldots, \nu . \tag{6}
\end{equation*}
$$

Further,

$$
\begin{aligned}
t_{n / P_{i_{1}} P_{i_{2}}} & =\left(t_{n / P_{i_{1}}}, t_{n / P_{i_{2}}}\right)=\prod_{j=1}^{\tau} q_{j}^{\min \left\{h_{i_{1} j}, h_{i_{2} j}\right\}}, \\
t_{n / P_{i_{1}} P_{i_{2}} P_{i_{3}}} & =\left(t_{n / P_{i_{1}} P_{i_{2}}}, t_{n / P_{i_{1}} P_{i_{j}}}, t_{n / P_{i_{2}} P_{i_{j}}}\right)=\prod_{j=1}^{\tau} q_{j}^{\min \left\{h_{i_{1} j}, h_{i_{2} j}, h_{i_{3} j}\right\}},
\end{aligned}
$$

and so on. Consider now for any j satisfying $1 \leq j \leq \tau$ the set

$$
H=\left\{\hbar_{1 j}, \hbar_{2 j}, \ldots, \hbar_{v_{j}}\right\}
$$

For $1 \leq i \leq \nu$, let \mathcal{F}_{i} and m_{i} be as in Lemma 1. Then the exponent of q_{i} in $\Pi_{0} \Pi_{2} \ldots$ is $h_{j}+m_{2}+m_{4}+\cdots$ and the exponent of q_{i} in $\Pi_{1} \Pi_{3} \ldots$ is $m_{1}+m_{3}+\cdots$. Consequently, the exponent of q_{i} in (3) is

$$
h_{j}-\left[m_{1}-m_{2}+m_{3}-\cdots-(-1)^{\tau} m_{\tau}\right]
$$

By Lemma 1, this exponent is $h_{j}-\max H$, which according to (6) is nonnegative.

It is easily seen that Equation (2) would not be sufficient for the conclusion of Theorem 1: define

$$
t_{n}=\left\{\begin{aligned}
n & \text { for } n=0,1,2,4,6,8, \ldots \\
2 & \text { for } n=3 \\
2 n & \text { for } n=5,7,9,11, \ldots
\end{aligned}\right.
$$

Then Equation (2) is satisfied, but, for example, the cyclotomic quotient $t_{6} t_{1} / t_{2} t_{3}$ is not an integer.

3. RESULTANT SEQUENCES AND THEIR DIVISORS

Suppose
and

$$
\begin{equation*}
X(t)=\prod_{i=1}^{p}\left(t-x_{i}\right)=t^{p}-X_{1} t^{p-1}+\cdots+(-1)^{p} X_{p} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
Y(t)=\prod_{j=1}^{q}\left(t-y_{j}\right)=t^{q}-Y_{1} t^{q-1}+\cdots+(-1)^{q} Y_{q} \tag{8}
\end{equation*}
$$

are polynomials; here any number of the roots x_{i} and y_{j} may be indeterminates, and we assume that the coefficients X_{k} and Y_{l} lie in the ring $I\left[x_{1}, \ldots, x_{p}\right.$, $\left.y_{1}, \ldots, y_{q}\right]$. Thus all roots which are not indeterminates must be algebraic integers. Instead of regarding the roots as given indeterminates, we may regard any number of the coefficients X_{k} and Y_{l} as the given indeterminates; in this case the roots x_{i} and y_{j} are regarded as indeterminates having functional interdependences.

The resultant sequence based on $\left\{x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{q}\right\}$ (or $\left\{x_{1}, \ldots\right.$, $\left.X_{p}, Y_{1}, \ldots, Y_{q}\right\}$) is the sequence $\left\{t_{n}: n=0,1, \ldots\right\}$ given by

$$
\begin{equation*}
t_{n}=\prod_{j=1}^{q} \prod_{i=1}^{p} \frac{x_{i}^{n}-y_{j}^{n}}{x_{i}-y_{j}} . \tag{9}
\end{equation*}
$$

Note that $t_{n}=R_{n} / R_{1}$, where R_{n} is the resultant of the polynomials

$$
\prod_{i=1}^{p}\left(t-x_{i}^{n}\right) \quad \text { and } \quad \prod_{j=1}^{q}\left(t-y_{j}^{n}\right) .
$$

By a divisor-sequence of a resultant sequence $\left\{t_{n}\right\}$, we mean a linear divisibility sequence $\left\{s_{n}: n=0,1, \ldots\right\}$ such that $s_{n} \mid t_{n}$ for $n=1,2, \ldots$.

We may now state Ward's conjecture mentioned in Section 1: every linear divisibility sequence is (essentially) a divisor-sequence of a resultant sequence. We further conjecture: every linear strong divisibility sequence of integers must lie in the class T of second-order sequences (i.e., Fibonacci
sequences) or else be a product-sequence $\left\{t_{1 n} t_{2 n} \ldots t_{m n}: n=0,1, \ldots\right\}$ where each divisor-sequence $\left\{t_{j n}: n=0,1, \ldots\right\}$ lies in T, for $j=1,2, \ldots, m$. The interested reader may wish to consult especially Theorem 5.1 of Ward [8]. One salient class of divisor-sequences of resultant sequences are the Vandermonde sequences, as discussed in [3]. Briefly, a Vandermonde sequence $\left\{t_{n}: n=0,1, \ldots\right\}$ arises from the polynomial (7) by

$$
t_{n}=\prod_{1 \leq i \leq j \leq p} \frac{x_{i}^{n}-x_{j}^{n}}{x_{i}-x_{j}}
$$

Thus, t_{n} is akin to the discriminant of the polynomial

$$
E(t)=\prod_{i=1}^{p}\left(t-x_{i}^{n}\right),
$$

as well as the resultant of $\Xi(t)$ and its derivative $\Xi^{\prime}(t)$. (See, for examp1e, van der Waerden [5, pp. 86-87].)

If one or more of the roots x_{i} and y_{j} underlying a divisor-sequence of a resultant sequence is an indeterminate, then, except for certain possible irregularities which need not be mentioned here, the sequence is a strong linear divisibility sequence.

As an example of a strong linear divisibility sequence of polynomials, we mention the 6th-order Vandermonde sequence which arises from

$$
X(t)=t^{3}-\sqrt[3]{x} t^{2}-1
$$

With generating function

$$
\frac{t\left(t^{2}+t+1\right)^{2}}{\left(t^{2}+t+1\right)^{3}+x t^{2}(t+1)^{2}}
$$

this sequence $\left\{t_{n}\right\}$ has, for its first few terms, $t_{0}=0, t_{1}=1, t_{2}=-1, t_{3}=$ $-x, \quad t_{4}=2 x+1, \quad t_{5}=x^{2}+x-1, \quad t_{6}=-3 x^{2}-8 x, \quad t_{7}=-x^{3}-x^{2}+9 x+1$, $t_{8}=4 x^{3}+18 x^{2}+6 x-1$. If $x=-1$, then $\left\{\nu_{n}\right\}$ is no longer a strong linear divisibility sequence, but is, of course, still a divisibility sequence. As reported in [3], we have

$$
\left|t_{n}\right| \leq F_{n} \quad(=n \text {th Fibonacci number })
$$

for $1 \leq n \leq 100$. It is not yet known if this inequality holds for all n.
Another conjecture follows: for any strong linear divisibility sequence of polynomials $t_{0}, t_{1}, t_{2}, \ldots$ which has no proper divisor-sequences, the polynomial t_{n} is irreducible if and only if n is a prime. A stronger conjecture is that the cyclotomic quotients (3) are all irreducible polynomials.

4. ELLIPTIC DIVISIBILITY SEQUENCES

Consider the sequence of polynomials in x, y, z defined recursively as follows:

$$
\begin{aligned}
& t_{0}=0, t_{1}=1, t_{2}=x, t_{3}=y, t_{4}=x z \\
& t_{2 n+1}=t_{n+2} t_{n}-t_{n-1} t_{n+1} \quad \text { for } n \geq 2 \\
& t_{2 n+2}=\frac{1}{x}\left(t_{n+3} t_{n+1} t_{n}-t_{n+1} t_{n-1} t_{n+2}\right) \quad \text { for } n \geq 2
\end{aligned}
$$

The sequence $\left\{t_{n}: n=0,1, \ldots\right\}$ is an elliptic divisibility sequence. If x, y, or z is an indeterminate then $\left\{t_{n}\right\}$ is a strong divisibility sequence. In this case, we conjecture, as in Section 3 for linear sequences, that the cyclotomic quotients (3) are the irreducible divisors of the polynomials t_{n}.

If x, y, and z are all integers, then $\left\{t_{n}\right\}$ is a strong divisibility sequence if and only if the greatest common divisor of y and $x z$ is 1 , as proved in [11].

We conclude with a list of the first several terms of a numerical elliptic strong divisibility sequence:

$t_{0}=0$	$t_{16}=-65$
$t_{1}=1$	$t_{17}=1529$
$t_{2}=1$	$t_{18}=-3689$
$t_{3}=-1$	$t_{19}=-8209$
$t_{4}=1$	$t_{20}=-16264$
$t_{5}=2$	$t_{21}=83313$
$t_{6}=-1$	$t_{22}=113689$
$t_{7}=-3$	$t_{23}=-620297$
$t_{8}=-5$	$t_{24}=2382785$
$t_{9}=7$	$t_{25}=7869898$
$t_{10}=-4$	$t_{26}=7001471$
$t_{11}=-23$	$t_{27}=-126742987$
$t_{12}=29$	$t_{28}=-398035821$
$t_{13}=59$	$t_{29}=1687054711$
$t_{14}=129$	$t_{30}=-7911171596$.
$t_{15}=-314$	

REFERENCES

1. Marshall Hall, "Divisibility Sequences of Third Order," Amer. J. Math. 58 (1936):577-584.
2. V. E. Hoggatt, Jr., \& C. T. Long, 'Divisibility Properties of Generalized Fibonacci Polynomials," The Fibonacci Quarterly 2, No. 2 (1974):113-120.
3. Clark Kimberling, "Generating Functions of Linear Divisibility Sequences," The Fibonacci Quarterly (to appear).
4. Clark Kimberling, "Strong Divisibility Sequences with Nonzero Initial Term," The Fibonacci Quarterly 16, No. 6 (1978):541-544.
5. B. L. van der Waerden, Modern Algebra (New York: Ungar, 1953).
6. Morgan Ward, "Note on Divisibility Sequences," BuZZ. AMS 42 (1936):843845.
7. Morgan Ward, "Linear Divisibility Sequences," Transactions AMS 41 (1937): 276-286.
8. Morgan Ward, "Arithmetical Properties of Sequences in Rings," Annals of Math. 39 (1938):210-219.
9. Morgan Ward, "A Note on Divisibility Sequences," BuZ工. AMS 45 (1939):334336.
10. Morgan Ward, "The Law of Apparition of Primes in a Lucasian Sequence," Transactions AMS 44 (1948):68-86.
11. Morgan Ward, "Memoir on Elliptic Divisibility Sequences," Amer. J. Math. 70 (1948):31-74.
12. Morgan Ward, "The Law of Repetition of Primes in an Elliptic Divisibility Sequence," Duke Math. J. 15 (1948):941-946.
