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INTRODUCTION 

Define a sequence (Tn) of i n t e g e r s by 
Tn = Tn_1 + Tn_,2 + Tn_3 + 1 when n i s even, 

Tn = Tn_l + Tn„2 + Tn_3 - 1 when n i s odd, 

o r , more c o n c i s e l y , by 

(1) Tn = Tn.x + Tn_2 + Tn_3 + ( -1) , 

w i th i n i t i a l v a l u e s 

(2) T1 = 0, T2 = 2, T3 = 3 . 

One of us (L.G.W.), playing with this sequence, had observed a number of ap-
parent regularities, of which the most striking was that all positive prime 
numbers p divide Tp—at least as far as hand computation was practicable. He 
then communicated his observations to the other of us, who—being a profes-
sional mathematician—did not know the reason for this phenomenon, but knew 
whom to ask. Light was shed on the properties of the sequence by D. H. Lehmer,* 
who proved that, indeed, Tp is divisible by p whenever p is a positive prime 
number, and also confirmed the other observations made by one of us by expe-
riment on some 200 terms of the sequence. [These further properties will not 
be referred to in the sequel—the reader, however, may wish to play with the 
sequence.] 

In this note we shall present Lehmerfs proof and state a conjecture of 
his, and then look at some other sequences with the same property. 

LEHMER'S PROOF 

It is convenient to replace the definition (1) of our sequence (Tn) by 
one that does not involve the parity of the suffix n, namely 

(3) T„ = 2T„_2 + 2T„_3 + Tn.h. 

This is arrived at by substituting 

Tn-i = Tn_2 + Tn_3 + Tn_h + (-l)""1 

in (1) and observing that (-1)""1 + (-l)n = 0. As the recurrence relation 
(3) is of order 4, we now need 4 initial values, say 

(4) ^o = 2, Tx = 0, T2 = 2, T3 = 3. 

It Is well known that the general term of the sequence defined by (3) is of 
the form 

(5) Tn = Aan + 53n + Cyn + D6n, 

*The authors are greatly indebted, and deeply grateful, to Professor 
Lehmer for elucidating the properties of this sequence. 
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where a, 3, y, 6 are the roots of the "characteristic equation" of (3), 

(6) f(x) E x
h - 2x2 - 2x - 1 = 0, 

and where the constants A, B, C, D are determined from the initial values 
(4) 

Put 

Sn = an + gn + yK + 6\ 
so that the sequence (Sn) satisfies the same recurrence relation as (Tn). If 
a15 a2, a3, Ok are the elementary symmetric functions of the roots of (6), 
that is 

a1 = a + g + y + 6 = 0, 

a2 = a3 + ay + a6 + 3y + 36 + y6 = -2, 

a3 = a3y + a36 + ay6 + 3y6 = +2, 

oh = a3y6 = -1, 

where the values are read off the identity 

o3x + ok9 

then 
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S3 = o\ - 3axa2 + 3a3 = 6, 

and, of course, 

S0 = a" + 3°  + Y°  + 6°  = 4. 
Thus, the initial values of (Sn) are just twice those of (Tn) see (4)—and 
it follows that 

for 
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We now use the formula 

(7) (x + y + z + y)p = xp + yp + zp + tp -h p ° Fp (x,y,z,t), 

where p is a prime number, x, y, z, t are arbitrary integers, and Fp (x,y9z,y) 
is an integer that depends on them and on p. This identity stems from the 
fact that in the multinomial expansion of the left-hand side of (7) , each 
term is of the form 

iljlklllx y z v 

v' 
with i, + j + k + I = p; and the coefficient ., ., '-, , -,, is divisible by p unless 

one of the i, j, k, I equals p and the other three are zero. In our case, 
putting 
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x = a, y = (3, z = y, t = 6, 

and recalling that a + (3 + Y + 6 = 51 = 0, we see that 

Sp = _p .Fp(afB,Y,6), 

which is divisible by p. Thus also, Tp = -^Sp is divisible by p when p is an 

odd prime. But for p = 2 we also have this divisibility, as T2 = 2. Thus, 
the following result is proved. 

lh(LQftQjn 1: If p is a positive prime number, then Tp, defined by the recur-
rence relation (3) with initial values (4), is divisible by p. 

D. H. Lehmer calls a composite number q a pseudopvime for the sequence 
(Tn) if q divides Tq , and he conjectures that there are infinitely many such 
pseudoprimes. The smallest such pseudoprime is 30, and we have found no other. 
It may be remarked that when q is a power of a prime number, say q = pd, then 
Tq is divisible by p but not, as far as we have been able to check, by any 
higher power of p. 

OTHER SEQUENCES 

Lehmer's argument presented above gives us immediately a prescription 
for making sequences of numbers, say (Un) , defined by a linear recurrence re-
lation and with the property that for prime numbers p the pth term is divisi-
ble by p. All we have to ensure is that the roots of the characteristic 
equation add up to zero, and that the initial values give the sequence the 
right start. Thus, we have the following theorem. 

Tk&Qfl&m 1: Let the sequence (Un) of numbers be defined by the linear recur-
rence relation of degree d > 1: 

(8) Un = a2Un_2 + asUn_3 + ••• + adUn_d 

with integer coefficients a2, a3, ..., a and initial values 

(9) U0 = d, Ul = 0, U2 = 2a2, U3 = 3a3, ..., 

and, generally, 

(10) Ui = af + a| + • • • + a], 

where a,, a2, ..., a are the roots of the characteristic equation 

xd - a2xd'2 - a3xd~3 - ••• -ad = 0, 
and i = 0, 1, 2, . . . , d - 1. Then Up is divisible by p for every positive 
prime number p. 

The proof is the same, mutatis mutandis, as that of Theorem 1, and we 
omit it here. 

We remark that d = 2 is uninteresting: we get U2m = 2a^ when n = 2m 
is even, and Un = 0 when n is odd. Thus, the first sequences of interest 
occur when d = 3. We briefly mention some examples. 
Examptz 1: Put d = 3, a2 = 2, a3 = 1. The sequence can be defined by 

un = un.1 + un._2 + (-i)n, 

which has the same growth rate, for n •> °°, as the Fibonacci sequence. The 
pseudoprimes of this sequence, that is to say the positive composite integers 
q that divide Uq , appear to include the powers 4, 8, 16, ... of 2. 
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Example 2: Put d = 3, a2 = 1, a 3 = l . The sequence becomes 

3, 0, 2, 3, 2, 5, 55 7, 10, 12, ..., 

with a much slower rate, for n -> °°, than the Fibonacci sequence. The roots, 
say a, 3, Y, of the characteristic equation are approximately 

a = 1.324718, 
3 = -0.662359 + i "0.5622195, 
y = -0.662359 - i * 0.5622795, 

and as n -*- °°, the ratio of successive terms of our sequence tends to a. This 

is substantially less than the ratio — + -^/5 = 1.61803... to which successive 

terms of the Fibonacci sequence tend. We have found no pseudoprimes for this 
sequence. 

If the "dominant" root of the characteristic equation, that is the root 
with the greatest absolute value, is not single, real, and positive (if it is 
not real, then there is in fact a pair of dominant roots; and also in other 
cases there may be several dominant roots or repeated dominant roots), the 
sequence may oscillate between positive and negative terms, as it will also, 
in general, if continued backward to negative n. 

Example. 3: The sequence defined by 

Un = 3Un_2 - 2Un_3 

with i n i t i a l values 
UQ = 3 , Ul = 0 , U2 = 6 

has the property that positive prime numbers p divide Up. It can also be 
described, explicitly, by 

Un = (-2)n + 2. 

For positive n, from n - 2 on, the terms are alternatingly positive and nega-
tive. 

These sequences have, like the Fibonacci sequence, suggested to one of 
the authors an investigation of certain groups, but this is not the place to 
describe the problems and results. They are related to those of Johnston, 
Wamsley, and Wright [1]. 
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